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EERC DISCLAIMER 
 
LEGAL NOTICE This research report was prepared by the Energy & Environmental 

Research Center (EERC), an agency of the University of North Dakota, as an account of work 
sponsored by the U.S. Department of Energy (DOE) and the North Dakota Industrial 
Commission (NDIC). Because of the research nature of the work performed, neither the EERC 
nor any of its employees makes any warranty, express or implied, or assumes any legal liability 
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed or represents that its use would not infringe privately owned rights. 
Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement 
or recommendation by the EERC. 
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necessarily reflect the views of DOE. 
 
 
DOE DISCLAIMER 
 

This report was prepared as an account of work sponsored by an agency of the United 
States Government. Neither the United States Government, nor any agency thereof, nor any of 
their employees, makes any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned rights. 
Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any agency thereof. The views 
and opinions of authors expressed herein do not necessarily state or reflect those of the United 
States Government or any agency thereof. 

 
 

NDIC DISCLAIMER 
 
This report was prepared by the EERC pursuant to an agreement partially funded by the 

Industrial Commission of North Dakota, and neither the EERC nor any of its subcontractors nor 
the NDIC nor any person acting on behalf of either: 
 

A. Makes any warranty or representation, express or implied, with respect to the accuracy, 
completeness, or usefulness of the information contained in this report or that the use of 
any information, apparatus, method, or process disclosed in this report may not infringe 
privately owned rights; or 



 

 

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use 
of, any information, apparatus, method, or process disclosed in this report. 

 
 Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by NDIC. The views and opinions of authors expressed herein do 
not necessarily state or reflect those of NDIC. 
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 This report and the demonstration project which it describes were supported both 
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Energy & Environmental Research Center, an agency of the University of North Dakota, and the 
North Dakota Industrial Commission; however, any opinions, findings, conclusions, or 
recommendations expressly provided or implicit in this report are those of the author(s) and do 
not necessarily reflect the views of CLR. Reference in this report to any product, method, 
process, or service, or the use of any trade, firm, or corporation name is for the information and 
convenience of the public and does not constitute an endorsement, recommendation, or 
suggestion of any preference by CLR or any of its officers, directors, or employees. Neither CLR 
nor any of its officers, directors, or employees a) assumes any liability or responsibility for or  
b) makes any warranty or representation, express or implied, regarding the accuracy, reliability, 
completeness, or usefulness of either the demonstration project or any information contained in 
this report, including but not limited to any product, method, process, or service referenced 
therein. Further, neither CLR nor any of its officers, directors, or employees warrants or 
represents that use of this report, including but not limited to any product, method, process, or 
service referenced therein, would not infringe privately owned rights. 
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DEMONSTRATION OF GAS-POWERED DRILLING OPERATIONS FOR 
ECONOMICALLY CHALLENGED WELLHEAD GAS AND EVALUATION OF 

COMPLEMENTARY PLATFORMS 
 
 
ABSTRACT 
 
  The Energy & Environmental Research Center (EERC) in partnership with the North 
Dakota Industrial Commission Oil (NDIC) and Gas Research Council; Continental Resources, 
Inc.; the U.S. Department of Energy (DOE) National Energy Technology Laboratory; ECO-
Alternative Fuel Systems; Altronic; and Butler Caterpillar conducted a project to demonstrate 
and evaluate utilization of wellhead gas for fueling diesel engines used to power a drilling rig in 
North Dakota. This evaluation consisted of two phases. Preliminary testing was conducted at the 
EERC using a leased Caterpillar engine and a mixture of diesel and simulated wellhead gas in a 
dual-fuel application. Results from these tests were reported previously and have been included 
as an appendix to this report. Phase II of the project consisted of field-testing engines using a 
mixture of diesel and wellhead gas on a drilling rig during the drilling of two wells. This report 
summarizes the results of the demonstration project, including an assessment of engine 
performance, diesel fuel savings, and the impact on engine emissions. 
 
 The results of the 47-day demonstration project illustrated that utilizing wellhead gas in 
bifuel applications to power a drilling rig can lead to an overall decrease in diesel fuel use, fuel 
cost, and truck transport of liquid fuel, without adversely impacting drilling operations. The 
specific results from this project included fuel-related cost savings of nearly $60,000 due to the 
lower value of wellhead gas relative to diesel and an increase in overall air emissions compared 
to diesel-only engine operation. If implemented broadly across the Williston Basin, bifuel 
operation of nearly 200 drilling rigs using otherwise flared wellhead gas could result in: 
 

1) 1,800,000 Mcf wellhead gas used to power drilling rigs in 1 year (2% of currently 
flared wellhead gas). 

 
2) 18,000,000 gallons of diesel fuel saved in 1 year. 

 
3) $72,000,000 diesel fuel costs saved in 1 year. 

 
4) 3600 fuel delivery trucks (5000-gallon tanker) avoided in 1 year. 

 
5) Air emission reduction can be achieved using commercially available diesel engine 

exhaust gas treatment (catalytic conversion). These technologies are capable of 
reducing CO and nonmethane hydrocarbon emissions in bifuel-operated engines to 
levels similar to 100% diesel-only operation. 

 
 This subtask was funded through the EERC–DOE Joint Program on Research and 
Development for Fossil Energy-Related Resources Cooperative Agreement No. DE-FC26-
08NT43291. Cash nonfederal funding was provided by NDIC. 
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DEMONSTRATION OF GAS-POWERED DRILLING OPERATIONS FOR 
ECONOMICALLY CHALLENGED WELLHEAD GAS AND EVALUATION OF 

COMPLEMENTARY PLATFORMS 
 
 
EXECUTIVE SUMMARY  
 
 The Energy & Environmental Research Center (EERC), in partnership with the North 
Dakota Industrial Commission (NDIC) Oil and Gas Research Council (OGRC); Continental 
Resources, Inc.; and the U.S. Department of Energy (DOE) National Energy Technology 
Laboratory (NETL), conducted a project evaluating the use of wellhead gas to fuel diesel engines 
powering a drilling rig in North Dakota. 
 
 Natural gas production in North Dakota has more than tripled since 2010, and nearly 30% 
of the gas produced is being flared. Currently, gas infrastructure projects valued at over  
$8 billion are at various stages of development. These projects include building processing 
plants, pipelines, and compression facilities to increase associated wellhead gas capture. In the 
meantime, a near-term opportunity is available to use associated gas, cofired with diesel, in 
diesel generators powering drilling rigs. 
 
 This project consisted of three major activities. Preliminary testing was conducted at the 
EERC using a Caterpillar engine and a mixture of diesel and simulated wellhead gas. Results 
from these tests were reported previously and are included in Appendix A of this report. The 
second major activity consisted of field-testing engines using a mixture of diesel and untreated 
wellhead gas, or bifuel, on a drilling rig during the drilling of two wells. A bifuel system operates 
by fumigating natural gas into the air intake of the diesel engine, reducing the amount of diesel 
fuel required to meet load. The bifuel system used for this project was provided by Altronic and 
is marketed as GTI Bi-Fuel®. Continental Resources, Inc., along with its drilling contractor, 
Cyclone Drilling, provided access to a drilling rig for this demonstration project. Cyclone Rig 
No. 28 is powered by three 3512C Caterpillar diesel engines that were modified by ECO-
Alternative Fuel Systems (ECO-AFS) with STEPCON®

 Bi-Fuel systems, manufactured by 
Altronic. The third major activity conducted under this project focused on assessing alternative 
end-uses for associated gas upstream of traditional gas-processing plants. The results from this 
end-use study were reported separately and are included in Appendix B of this report. 
 
 The results of the 47-day demonstration of bifuel for rig power illustrated that utilizing 
wellhead gas in bifuel applications to power a drilling rig can lead to an overall decrease in 
diesel fuel use, fuel cost, and truck transport of liquid fuel, without adversely impacting drilling 
operations. The specific results from this project included: 
 

1) Reduced diesel fuel use by 16,000–18,500 gallons and associated fuel delivery truck 
traffic. 
 

2) Fuel-related cost savings of nearly $60,000 because of the lower value of wellhead gas 
relative to diesel. 
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3) Beneficial use of wellhead gas at the point of production. 
 

4) Decreased nitrogen oxide and increased carbon monoxide and nonmethane 
hydrocarbons when compared to diesel-only engine operation. These emissions can be 
mitigated by adding catalytic emission control to the engine exhaust. 

 
5) Seamless operation of the GTI Bi-Fuel system with no impact on drilling operations. 

 
6) Additional fuel savings possible by minimizing diesel-only operation with optimized 

process control and/or operational oversight of the GTI Bi-Fuel system. 
 

7) Bifuel systems operated efficiently with routine engine maintenance. 
 

 Although bifuel operation of drilling rigs is beginning to be recognized as a viable option 
for producers, the majority of drilling rigs in North Dakota are still fueled by diesel only. 
Logistical and contractual issues can complicate the availability of wellhead gas for drilling 
operation. However, the results from this study highlight the benefits of working through these 
issues and expanding implementation of bifuel systems. Based on the results from this project, 
the project team estimated the overall effect of utilizing otherwise flared wellhead gas to power 
drilling operations of nearly 200 drilling rigs in North Dakota. The result of such broad 
implementation would include the following: 
 

1) 1,800,000 Mcf wellhead gas used to power drilling rigs in 1 year (2% of currently 
flared wellhead gas). 
 

2) 18,000,000 gallons of diesel fuel saved in 1 year. 
 

3) $72,000,000 diesel fuel costs saved in 1 year. 
 

4) 3600 fuel truck deliveries (5000-gallon tanker) avoided in 1 year. 
 

5) Air emission reduction can be achieved using commercially available diesel engine 
exhaust gas treatment (catalytic conversion). These technologies are capable of 
reducing CO and nonmethane hydrocarbon emissions in bifuel-operated engines to 
levels similar to 100% diesel-only operation. 

 
 This subtask was funded through the EERC–DOE Joint Program on Research and 
Development for Fossil Energy-Related Resources Cooperative Agreement No. DE-FC26-
08NT43291. Cash nonfederal funding was provided by NDIC. 
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DEMONSTRATION OF GAS-POWERED DRILLING OPERATIONS FOR 
ECONOMICALLY CHALLENGED WELLHEAD GAS AND EVALUATION OF 

COMPLEMENTARY PLATFORMS 
 
 
INTRODUCTION 
 
 Natural gas production in North Dakota has more than tripled since 2010, but the 
development of the Bakken oil play has progressed at a rate that has outpaced the development 
of gas-gathering infrastructure to handle all of the associated gas produced alongside oil. This 
has resulted in nearly 30% of the natural gas produced being flared. However, infrastructure is 
being developed to move the natural gas to market, and projects worth $8 billion are under 
various stages of development to add processing plants, pipelines, and compression facilities. In 
the meantime, there is a use for the flared natural gas. With nearly 200 diesel-powered drilling 
rigs in operation in the state at any given time, there is a high demand for diesel fuel to run them. 
A solution to reduce the amount of diesel use and the associated fuel costs is to convert the diesel 
engines used on the drilling rigs to burn natural gas or wellhead gas to replace some of the diesel 
fuel. The cofiring of natural gas in a diesel engine is not new technology. However, using 
wellhead gas which contains significant quantities of higher hydrocarbons compared to pipeline 
gas has not been fully explored. The potential problem with wellhead gas, especially in the 
Bakken shale, is the relatively high concentration of higher hydrocarbons. The presence of 
ethane, propane, butane, pentane, and heptane at concentrations of up to 50% (North Dakota 
Department of Mineral Resources, 2010) can lead to increased engine knock, which can severely 
damage the engines. The vast majority of bifuel systems operate using pipeline natural gas; 
consequently, more data and experience are available for fuels with greater methane purity.  
 
 The Energy & Environmental Research Center (EERC), in conjunction with the North 
Dakota Industrial Commission Oil and Gas Research Council; the U.S. Department of Energy 
National Energy Technology Lab (NETL); Continental Resources, Inc.; ECO-Alternative Fuel 
Systems (ECO-AFS); Altronic; and Butler Caterpillar, has completed the current project to 
demonstrate and evaluate utilization of wellhead gas for fueling diesel engines used to power 
drilling rigs in North Dakota. Phase I of the project was conducted at EERC pilot facilities and 
evaluated diesel engine performance while simultaneously firing diesel fuel and a simulated 
Bakken formation wellhead gas. The final report for Phase I testing is included in Appendix A. 
Phase II of the project was to demonstrate and evaluate the performance of the diesel engines, 
outfitted with bifuel systems, used to power a drilling rig while firing a blend of diesel fuel and 
untreated rich wellhead gas under actual drilling operation. 
 
 
BACKGROUND 
 
 Modification of diesel engines to operate on a mixture of diesel and natural gas is known 
as dual-fuel or bifuel technology. The terminology is used interchangeably and is intended to 
refer to the firing of diesel fuel and natural gas simultaneously in a diesel engine. The 
International Association for Natural Gas Vehicles defines the terms differently from the U.S. 
Environmental Protection Agency (EPA) and the California Air Resources Board (CARB). In 
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the United States, dual fuel (simultaneous firing) is marketed as a “bifuel” system because of the 
EPA and CARB definitions, which define a dual-fuel vehicle as having the option to fire only 
one fuel at a time.  
 
 A bifuel system operates by fumigating natural gas into the air intake of the diesel engine. 
Combustion of the natural gas is initiated from the pilot ignition of diesel fuel injected in the 
combustion cylinder. A bifuel system has the ability to switch fuel modes without interruption in 
engine power output and can be automatically switched to 100% diesel mode during operations 
above the programmed power limit, thus avoiding the necessity to derate the engine. The various 
components of a bifuel system are installed external to the engine, and no engine disassembly or 
modification is required. All original equipment manufacturer (OEM) engine specifications for 
injection timing, valve timing, and compression ratio remain unchanged after installation. 
Typical bifuel control systems monitor natural gas pressure, manifold pressure, temperatures, 
and engine vibration to control fumigated gas injection. 
 
 Diesel engine systems are designed based on internal combustion properties of the fuel. 
Although cetane is the fuel property of interest in diesel engines, the octane number is important 
when gaseous fuels are combusted in combustion ignition engines. Gaseous fuels with lower 
octane numbers like hexane can contribute to engine knock. Table 1 provides the composition of 
a pipeline-quality natural gas and a typical wellhead gas found in the Bakken Formation  
(Caterpiller, 1997; Energy Conversions Inc., 2011; Ferguson, 1986). The combustion 
characteristics for the individual gases are also presented. Notice that the natural gas liquids 
(NGLs) of higher carbon numbers have a lower octane rating, which means they have less knock 
resistance and, therefore, a lower critical compression ratio relative to autoignition. Mixing 
NGLs with methane lowers the fuel’s resistance to knock and, therefore, requires greater 
understanding to better tune an engine for Bakken Formation gas applications in bifuel systems.  
 

 
Table 1. Composition and Combustion Characteristics of Pipeline and Bakken Formation 
Gases 
 

Dry Pipeline 
Gas 

Sample 
Bakken Gas 

Octane 
Number 
(motor) 

Critical 
Compression 

Ratio 

Autoignition 
Temperature, 

°F 
Methane, CH4 92.2% 55% 120 12.6 1076–1200 
Ethane, C2H6 5.5% 22% 99 12.4 959 
Propane, C3H8 0.3% 13% 97 12.2 896 
Butane, C4H10  5% 90 5.5 788–932 
Pentane, C5H12  1% 63 4.0 500–788 
Hexane, C6H14  0.25% 26 3.3 437–451 
Heptane, C7H16  0.1% 0   
Nitrogen, N2 1.6% 3%    
Carbon Dioxide, CO2 0.4% 0.5%    
Diesel Fuel NA NA NA NA 410–750 
HHV,1 Btu/scf 1041 1495    
1 Higher heating value. 
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 Normal diesel fuel combustion produces a pressure rise inside the engine cylinder at a 
predictable rate and peak. The combustion in a diesel engine is controlled by the injection rate of 
diesel fuel into the cylinder. Critical to diesel engine design is the compression ratio and the 
appropriate ignition delay period for the fuel. Ignition delay is the period between the start of 
injection and autoignition of the fuel. A designer strives for the appropriate ignition delay, for 
once the mixture of fuel and air autoignites, all of the fuel already injected burns very quickly. 
Too much fuel charge or too high of a compression ratio can result in intolerable knocking in a 
diesel engine. Engine knock is the noise generated from autoignition of the fuel in the engine 
cylinder, where the fuel burns quickly and will rattle the engine parts. This form of combustion 
within the cylinder is referred to as detonation and involves a supersonic flame front that 
propagates through the fuel gas mixture. During audible knock, the pressure produced inside the 
cylinder is erratic and creates forces that lead to catastrophic engine damage such as piston 
pitting and physical cylinder head failure. In a bifuel engine, autoignition of the fumigated gas is 
unlikely to result from piston compression. Natural gas ignites at a much higher temperature 
(1076°–1200°F) compared to diesel fuel (410°–750°F) (Generac Power Systems, 2003); 
however, a significantly larger amount of fuel is precharged in the cylinder prior to injection of 
diesel. The injection of diesel is the source for ignition of the gaseous fuel; therefore, careful 
consideration is required to ensure the fuel charge does not burn uncontrollably upon ignition. 
 
 Fuels have been commonly characterized relative to their performance in piston engines. 
Spark-ignited engines are normally used to fire gaseous fuels and gasoline-based vapors. The 
ignition timing and compression ratio of spark-ignited engines are critical variables relative to 
proper fuel combustion. Octane rating or octane number is a standard measure of the 
performance of spark-ignition fuels. The octane rating of gasoline is measured in a test engine 
and is defined by comparison with the mixture of 2,2,4-trimethylpentane (isooctane) and heptane 
that would have the same antiknocking capacity as the fuel under test: the percentage, by 
volume, of 2,2,4-trimethylpentane in that mixture is the octane number of the fuel. A fuel with a 
rating of 90 octane means that the fuel has the same detonation resistance as 90% isooctane with 
10% heptane. Octane ratings of over 100 are possible because some fuels are more knock-
resistant than isooctane; methane is a good example, with an octane rating of 120. 
 
 Cetane number (CN) is a measurement of the combustion quality of diesel fuel during 
compression ignition. It is a significant expression of the quality of a diesel fuel. CN is a measure 
of a fuel’s ignition delay, which is the time period between the start of injection and the first 
identifiable pressure increase during combustion of the fuel. CN is measured by burning the fuel 
in a Cooperative Fuel Research (CFR™) engine, under standard test conditions. The 
compression ratio of the CFR engine is increased until the time between fuel injection and 
ignition is 2.407ms. The resulting CN is then calculated by determining which mixture of cetane 
(hexadecane) and isocetane (2,2,4,4,6,8,8-heptamethylnonane) will result in the same ignition 
delay. In a particular diesel engine, higher cetane fuels will have shorter ignition delay periods 
than lower cetane fuels. CNs are only used for diesel fuels and do not apply to gaseous fuels. In 
short, the higher the CN, the more easily the fuels will combust in a compression setting such as 
a diesel engine. 
 
 In a spark-ignition engine, the higher the octane number, the more compression the fuel 
can withstand before detonating. Fuels with a higher octane rating are used in high-compression 



 

4 

engines that generally have higher performance. In contrast, fuels with low octane numbers (but 
high CNs) are ideal for diesel engines. However, fuels rated for high knock resistance in spark-
ignition engines should not be confused with the performance of compression ignition fuels that 
are used in diesel engines which have significantly higher compression ratios than spark-ignited 
engines. 
 
 It is important to understand the fuel characteristics relative to both knock and compression 
ignition characteristics for bifuel operations. A diesel engine fitted with a bifuel system relies on 
compression to ignite diesel fuel, which, in turn, provides the spark to ignite the gaseous fuel. It 
is in this sense that both octane (knock) and cetane (ignition delay) performance are relevant 
characteristics of the subject fuels. Previous work relative to fuel performance in bifuel engines 
has provided considerable insight to the current study.  
 
 Performance of gaseous fuels fired in diesel engines is primarily measured by recording 
the pressure rise in the cylinder versus the crank angle. Such data can indicate extreme pressure 
rise due to detonation of the fuel and provide the characteristics of ignition delay. Generally, 
long ignition delay results in unburned hydrocarbons and lower efficiency. Ignition that is too 
advanced can result in knock.  
 
 Papagiannakis and others (2008) measured the performance of a single-cylinder Lister 
LV1 direct injection diesel engine fitted with a natural gas supply to the engine air intake. The 
compression ratio of the engine was 17.6:1, and injection timing was set to 26 degrees before top 
dead center (BTDC). The power output of the engine was 6.7 kW at 3000 revolutions per minute 
(rpm). Figure 1 demonstrates the decrease in cylinder pressure and ignition lag as greater 
amounts of diesel fuel were displaced with natural gas at constant load, engine speed, and brake 
mean effective pressure. The peak pressure difference between diesel fuel operation and 86% 
replacement of diesel fuel with natural gas is about 3–4 degrees of crank angle. It can generally 
be concluded that adding methane only to a diesel engine presents a low risk for engine knock. 
 
 Propane or liquefied petroleum gas (LPG), normally a mix of propane and butane, has also 
been studied in dual-fuel diesel engines. Bakken gas propane composition can be greater than 
13%. Propane can have a higher likelihood for knock because of the higher energy density (2.5×) 
and lower octane rating (97 vs. 120) relative to methane. At 40% diesel replacement and full 
load, the optimum blend of propane and butane for firing in a diesel engine was found to be 70% 
propane and 30% butane (Le and Nguyen, 2011). AVL research engines are commonly used to 
study piston engine combustion phenomenon. An AVL 5402 research engine was converted by 
Le and Nguyen (Saleh, 2008) to operate as a dual-fuel diesel with LPG supplied to the engine air 
intake. The compression ratio for this engine was 17.3:1 and rated for 9 kW at 3200 rpm. 
Pressure versus crank angle data was collected for various amounts of LPG used to replace diesel 
fuel, Figure 2. As LPG was added to the engine, the peak pressure increased, the ignition lag 
decreased, and the knocking tendency increased. During combustion, propane or LPG has the 
exact opposite effect of methane. Le and Nguyen (2011) also experimented with advancing the 
injection timing in the range of 14–24 degrees BTDC, Figure 3. Advancing the timing produced 
higher cylinder pressure rise at 20% replacement and full load operation at 2000 rpm. 
Experiments with changing the amount of diesel pilot produced little effect on the pressure rise 
or ignition lag. 
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 The heaviest hydrocarbons in Bakken gas include hexane and heptane. These gases are 
normally less than 1% of the total gas composition. However, the heavier gases have less knock 
resistance. The performance of these gases was considered by Alperstein and others (1957) using 
a 17:1 single cylinder diesel engine with ignition timing at 20 degrees BTDC. Figure 5 shows 
that additions of these heavier hydrocarbons in quantities of near 20% produce a substantial 
pressure rise as compared to the baseline pressure profile for firing of diesel fuel. Small 
quantities (<5%) should produce minimal appreciable cylinder pressure increase. Ignition delay 
appeared to be minimal. 
 
 A simplified heat release model was used by Patro (1994) to evaluate the effects of 
hydrogen on combustion in a diesel-fueled engine. Patro showed that the first and second 
derivatives of the pressure versus crank angle curve (P/θ) could be used to determine the start of 
injection, the start of ignition, and the maximum rate of pressure rise. These values could be used 
to determine the effect of fuel composition on ignition delay. 
 
 In summary, literature review indicates that Bakken gas is likely to have a higher 
propensity for knock than pipeline natural gas. Methane, which comprises the majority of 
Bakken gas, when fired alone with diesel fuel produces an ignition delay and lower cylinder 
pressures. This performance is likely offset to a degree by the composition of propane and 
heavier hydrocarbons in Bakken gas. Performance for ethane fired in a diesel engine did not 
seem to be available in the literature. Ethane is greater than 20% composition in Bakken gas, and 
its performance, although unknown, could have some influence on combustion properties. 
 
 
OBJECTIVES 
 
 This project was designed to evaluate the performance of diesel engines used to power 
drilling operations using Bakken Formation gas in bifuel applications. The project consisted of 
three major activities. The first activity consisted of testing the operational limits of a diesel 
engine using rich gas in a bifuel application. These tests were completed at the EERC using a 
simulated Bakken gas. Results from those tests were previously reported and are included as 
Appendix A. 
 
 Following completion of testing at the EERC, a field demonstration was completed to 
evaluate diesel engine performance using wellhead gas during actual drilling operations. Data 
collected from this field activity included engine performance data, fuel savings, and emission 
measurements. The results from this demonstration activity form the basis of this report. 
 
 In addition to the activities focused on bifuel operation, a study was conducted to look at 
alternative gas use opportunities in the Williston Basin. This report entitled “End-Use 
Technology Study – An Assessment of Alternative Uses for Associated Gas” was submitted to 
DOE in October 2012. A copy of this study is included in Appendix B. 
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Table 2. Diesel Engine Specifications 
Engine Caterpillar 3512C (four-stroke cycle) 
Cylinders 12 
Aspiration Turbo-charged, after-cooled 
Compression Ratio 14.7:1 
Speed, rpm 1200 
Engine Power, BHP 1476 
Engine Certification EPA TIER-2 2006 
 
 
GTI Bi-Fuel system and a schematic of the system is shown in Figure 6. The system uses 
individual solenoid valves to control the natural gas flow to the engines and allow for the greatest 
substitution rates over a wider load range. The GTI controller monitors the following bifuel 
system and engine parameters:  
 

 Natural gas supply pressure (GSP) 
 Manifold air pressure (MAP) 
 Manifold air temperature (MAT) 
 Air filter vacuum (VAC) 
 Engine exhaust gas temperature (EGT) 
 Engine vibration (VIB) 
 Engine load 

 
 The GTI controller uses preset safety and control levels for each system parameter to 
activate or deactivate the Bi-Fuel system. If a parameter exceeds the control level, the Bi-Fuel 
system will stop natural gas flow for a period of time (5 seconds for this application), the 
controller will then check all of the parameters, and if all are below the control limit, the natural 
gas supply will be turned on again. During operation, if any of the parameters exceed the safety 
level, the GTI system will turn off the natural gas and require a manual reset to initiate restart of 
natural gas flow. The vibration parameter has the added feature that the vibration signal must 
exceed the control or safety threshold for a specified period of time before the control is 
activated. For this set up, the “vibration time” was set to 3 seconds. The STEPCON system is 
very flexible, allowing different amounts of natural gas to be supplied to the engine under 
different load conditions. This feature allows the engine to operate with the greatest amount of 
natural gas possible at different load, resulting in more efficient operation and the greatest 
substitution of diesel. At low load (0% to 12%), natural gas flow is stopped because it becomes 
difficult for the engine governor to maintain a constant engine speed if bifuel is being used. The 
STEPCON systems used on this drilling rig were set up with the following valve arrangement: 
 

 0%–12% engine load – natural gas supply valves closed, no diesel substitution. 
 

 12%–20% load – primary power valve open (roughly 20% diesel substitution at 13% 
load). 

 
 20%–30% load – primary power valve and first solenoid valve open (roughly 30% 

diesel substitution at 20% load). 
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To measure crank angle and rpm, a BEI Sensors H25 incremental optical encoder with a 1/4° 
resolution was attached to the end of the generator shaft which is directly coupled to the engine 
crank shaft. The encoder was indexed to top dead center (TDC) of the No. 1 cylinder. Diesel fuel 
flow was measured with FloScan diesel flowmeters that were installed on each engine.  
 
 LabView was used along with National Instruments CompactRIO components, to create a 
data acquisition system. The system was set up to log data collected by the GTI system, high-
speed pressure data, rpm, and fuel consumption data. Each of the GTI systems was hard-wired to 
the logging computer, but the high-speed pressure data and fuel flow rate data were transmitted 
over a wireless router. Initial communication issues prevented access to all of the GTI data. Data 
were collected at 15-second intervals for each engine. The cylinder pressure and rpm data 
acquisition system were programmed to capture pressure data for four complete revolutions of 
the engine and log it to a file only when selected. This kept the data logged for each test 
condition to a manageable size. A Testo 350 M/XL portable flue gas analyzer were used to 
measure the stack temperature and concentrations of NOx, SO2, O2, CO, and CxHy. The data from 
the analyzer were logged manually. Hourly wellhead gas flow data were downloaded daily from 
the ABB flowmeter in the gas-conditioning skid. 
 
 Analysis of the wellhead gas collected at the inlet and outlet of the conditioning skid are 
presented in Table 3. Results show the composition is consistent over time and very little change 
in gas composition across the conditioning skid. The hydrocarbon composition of the wellhead 
gas was very similar to that used for the parametric study performed at the EERC (see  
Appendix A). The HHV of the wellhead gas was approximately 1450 Btu/ft3 compared to 
methane at 1008 Btu/ft3. 
 
 
PROCEDURE 
 
 Data were downloaded daily and compiled into a report provided to Continental 
Resources, Inc., and Cyclone Drilling. The reports included diesel and wellhead gas consumption 
for the previous day along with estimated diesel savings. Data available from the GTI systems 
included the following: 
 

 % engine load for each engine 
 Exhaust gas temperature 
 Turbocharger inlet pressure  
 Vibration from two sensors 
 Bi-Fuel on/off signal 
 Manifold air pressure 

 
 These data, along with the fuel consumption data, were enough to calculate fuel savings for 
each engine. The percent load, diesel rate, exhaust gas temperature, and vibration data were 
plotted each day as a function of time.  
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Table 3. Analysis of Unconditioned and Conditioned Gas 
Date 8/17/2012 8/17/2012 9/6/2012 9/6/2012 9/12/2012 
Location Inlet Outlet Inlet Outlet Outlet 
Component mol% mol% mol% mol% mol% 
Carbon Dioxide 0.75 0.75 0.71 0.71 0.73 
Propane 12.23 12.27 11.76 11.90 11.97 
iso-Butane 1.23 1.23 1.15 1.17 1.17 
n-Butane 3.63 3.64 3.36 3.41 3.43 
Hydrogen Sulfide 0.00 0.00 0.00 0.00 0.00 
iso-Pentane 0.57 0.57 0.50 0.52 0.51 
c-2-Butene 0.01 0.01 0.00 0.00 0.01 
n-Pentane 0.73 0.74 0.60 0.62 0.64 
1,3-Butadiene 0.00 0.01 0.00 0.00 0.00 
Ethane 22.36 22.44 21.75 21.95 22.32 
Oxygen/Argon 0.10 0.07 0.71 0.51 0.25 
Nitrogen 3.31 3.24 5.25 4.60 3.75 
Methane 55.07 55.02 54.20 54.61 55.23 
Carbon Monoxide 0.01 0.01 0.00 0.00 0.00 
  Total 100.00 100.00 100.00 100.00 100.00 

 
 
 Stack emissions were periodically measured for each engine. In addition to the data from 
the Testo gas meter, gas bag samples were collected from each stack and at the inlet and outlet of 
the gas conditioning skid. The Testo data were converted to a g/BHP*hr (gram/brake horsepower 
hour) for comparison on a common basis. The gas bag samples were analyzed using a gas 
chromatograph–mass spectrometer at the EERC. Hydrocarbons species through pentane (C5) 
were identified. These data were used to determine the NMHC present in the stack exhaust. 
 
 
RESULTS 
 
 During the 47-day demonstration, engine performance was observed by EERC researchers 
and Cyclone Drilling operators. Drilling operations and engine use were not altered to 
accommodate the use of the GTI Bi-Fuel system. In general, all three engines alternated from 
bifuel operation to diesel only and back to bifuel mode according to normal operational protocol 
without any perceivable effect.  
 
 To evaluate the true effect of bifuel operation on drilling rig operations and engine 
performance and issues of interest to stakeholders, EERC personnel collected a variety of data. 
Results are organized into the following categories:  
 

1) Engine Performance Summary 
2) Fuel Savings Estimates 
3) Opportunities for System Optimization  
4) Engine Exhaust Emission Measurement 
5) Ignition Delay and Engine Knock 
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Engine Performance Summary 
 
 Engine performance data were obtained from two sources; operational data were collected 
from the GTI control system on each engine, and diesel fuel flow data were obtained from 
meters installed on each of the three engines. Operational data collected from the GTI control 
system which provided the most relevant information about engine performance included engine 
vibration, engine load measured as percentage of full scale (% load), and exhaust gas 
temperature. Overall, engine performance appeared to be unaffected by the addition of gaseous 
fuel, and representative data have been provided in this report to illustrate what was observed 
over the course of the two-well demonstration.  
 
 During normal drilling operations, engine loads tend to remain high, in the range of  
30%–60% load. At these load conditions, the engines can operate with the highest rate of natural 
gas addition and greatest diesel fuel savings. Under low load and idle conditions, natural gas 
supply is stopped and the engines operate exclusively on diesel fuel. An illustration of engine 
load during steady-state drilling operation is provided in Figure 7. Typically, two of the three 
engines are operated and synchronized to provide power to the drill rig. The third engine is 
typically turned off since sufficient power is achievable from operating two engines. Operation 
of the three engines is sequenced to ensure that the hours of operation are the same for each 
engine. In Figure 7, Engine No. 1 and Engine No. 2 operated for the majority of the 24-hour 
period, with the majority of the time spent between 30% and 50% load. The intermittent spike 
and drop in load from 10% load to nearly 80% load correspond with drilling operations and the 
addition of a new piece of drill pipe. 
 
 Diesel flow to each engine was measured continuously and provided an indication of when 
gaseous fuel was supplied to the engines. An illustration of the diesel flowmeter data for the 
same time period of steady-state drilling operation is provided in Figure 8. Over the 24-hr period, 
Engine No. 1 operated with a diesel consumption rate of about 18 gph, with additional fuel being 
supplied by wellhead gas through the GTI system. The plot for Engine No. 2 illustrates the 
change in diesel fuel consumption when operating in bifuel mode. Diesel fuel consumption was 
approximately 22 gph while operating with wellhead gas supply through the GTI system. At 
around 5 p.m., the wellhead gas supply was stopped, and the diesel fuel rate immediately 
increased to 40 gph to provide the necessary fuel to meet the steady load demand. During this 
period, diesel flowmeter data indicate that approximately 45% of the diesel fuel demand was 
provided by wellhead gas. 
 
 Engine exhaust gas temperature is one of several parameters the GTI system monitors to 
ensure proper engine performance when supplying gaseous fuel to the engine. Figure 9 plots the 
EGT for all three engines during the same 24-hr period presented in Figures 7 and 8. These data 
were collected early in the drilling cycle when the daytime ambient temperature exceeded 90°F 
(see Appendix C). The high ambient temperatures resulted in elevated operating temperature and 
EGT in the engines. When the EGT increased to 1200°F, the GTI system turned off gas flow as 
illustrated previously in Figure 8 by the increase in Engine No. 2 diesel fuel use between 17:00 
and 24:00. Stopping gaseous fuel supply to Engine No. 2 did not result in a decrease in the EGT, 
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Fuel Savings Estimates 
 
 The fuel savings were determined two different ways. The first method relied on diesel 
fuel meter data and theoretical “diesel-only” data to estimate fuel savings. ECO-AFS 
commissioning data were used to generate fuel consumption versus load curves for diesel-only 
operation for each of the three engines. When engines were operating in bifuel mode, the actual 
diesel consumption was measured. The diesel-only curves were used, along with the measured 
engine load, to calculate what the theoretical diesel-only consumption rate would have been if 
wellhead gas supply had been off. The fuel savings were determined by calculating the 
difference between the calculated “diesel-only” fuel rate and the measured fuel rate under bifuel 
operation. Figure 13 plots the calculated daily cumulative diesel fuel savings for each engine and 
the total for all three engines. Diesel fuel savings data were obtained beginning on August 22 
after diesel flowmeters were installed and calibrated. It is clear from the plot that the wellhead 
gas supply rate for Engine No. 3 was lower than the other two engines. ECO-AFS had set the gas 
injection rate lower because of higher engine vibration measured during commissioning of the 
GTI systems.  
 
 In addition to diesel fuel measurements, a second method was used to calculate fuel 
savings. The ABB gas meter measured total wellhead gas supplied to the three engines over the 
course of the field demonstration. This method does not provide engine specific savings, but it 
did provide a total wellhead gas consumption value. The wellhead gas consumption rate was 
converted to an equivalent diesel rate based on 1450 Btu/scf for the gas and 140,000 Btu/gal for 
the diesel fuel. Figure 14 plots the total calculated daily cumulative diesel fuel savings along 
with the cumulative wellhead gas consumption (converted to an equivalent diesel rate). Since no 
diesel consumption data were available before August 22, the diesel data were adjusted to match 
the gas data on that date. The two methods yield similar results. The increasing difference near 
the end of the test period may be caused by drift in the diesel or gas flowmeters. Based on these 
results and a diesel price of $3.80/gal, the savings in diesel fuel over the duration of the two well 
demonstrations was between $64,000 and $70,000. This fuel savings estimate assumes a 
conservative $5.00/Mcf wellhead gas value (taking into account the value of high NGL 
associated gas), resulting in approximately $8900 for the cost of wellhead gas over the duration 
of the demonstration. 
 
 The diesel savings that can be achieved using a bifuel system is highly dependent upon the 
rig activity. Figure 15 plots the combined daily diesel replacement rate for all three engines. The 
highest replacement rates occurred when the rig was drilling steady, with limited tripping or idle 
time. These operations are consistent with engine loads between 30% and 50% maximum and 
result in the greatest diesel replacement with wellhead gas. The average replacement rates for 
each activity are presented in Table 5. Typically, when the rig was idle, the engines were at less 
than 12% load, and the wellhead gas flow was off. Figures 16 and 17 plot the load profiles for 
each engine in terms of hours at load or percentage of time at load. The load ranges are broken 
down to match the control levels of the GTI STEPCON system. At less than 12% load, the 
wellhead gas flow is turned off. Figures 18 and 19 plot the diesel fuel used and the diesel fuel 
saved for each STEPCON control range. The figures show there is a large amount of time where 
the engines are operating between 0% and 12% load and wellhead gas flow is off, therefore, no 
fuel savings. 
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additional system up-time and associated diesel fuel savings. These observations and associated 
recommendations primarily require changes in the philosophy and operation of the Bi-Fuel 
system and do not represent shortcomings in the GTI Bi-Fuel system or control strategy. 

 
 Engine condition and maintenance are important factors in ensuring the maximum benefit 
from any bifuel system. The GTI Bi-Fuel system is designed and configured to provide safe 
reliable gaseous fuel supply to the diesel engine while maintaining operation within the OEM 
specifications. In some ways, use of the Bi-Fuel system can lead to improved engine operation 
because of the presence of a live/real-time display providing input on engine metrics. These data 
can help engine operators quickly assess engine performance to provide some diagnostic 
capabilities to the user. As mentioned previously, there were days during the drilling cycles 
where the ambient temperature was high, causing the GTI system to stop wellhead gas flow. 
During these times, EERC personnel monitored engine parameters and notified Cyclone Drilling 
personnel that engine temperatures were exceeding control or safety limits, and measures were 
taken to bring engine temperature back within an acceptable range. During these periods, an 
additional 2000 gallons of diesel fuel could have been replaced by wellhead gas if the engine-
cooling systems had been working properly. As such, cooling system maintenance was added to 
the list of tasks to be completed during regularly scheduled maintenance. If engine performance 
had not been monitored, the diesel-only periods could have been much longer, resulting in less 
fuel savings. 
 
 Another opportunity for improved fuel savings was illustrated by the difference observed 
in higher diesel fuel use measured from Engine No. 3 relative to the others as shown in  
Figure 13. If Engine No. 3 had run similar to the other two engines, an additional 3000 gallons of 
diesel fuel could have been replaced. ECO-AFS personnel derated the bifuel system because of 
excessive vibration. If mechanics were aware of this, they may have been able to work with 
ECO-AFS to minimize the vibration and increase the diesel replacement rate. In order to take 
advantage of these opportunities in the future, the performance of the engines and diesel 
consumption will need to be monitored. Having someone available to remotely reset the GTI 
controller when a safety fault occurs could reduce bifuel down time and increase diesel 
replacement. Monitoring engine parameters and diesel fuel consumption will help identify 
engines that require maintenance or adjustments that may need to be made to the GTI system. 
Other possibilities for cost saving would involve load leveling during tripping activity or 
operating fewer engines at higher loads during low-demand periods. Figures 16 and 17 show that 
during more than 30% of the time the engines are running below 12% load. It may be beneficial 
to conduct routine bifuel system tuning to ensure the best possible diesel fuel replacement. 
 

Engine Exhaust Emission Measurement 
 
 Operating a diesel generator with a mixture of wellhead gas and diesel fuel can change the 
combustion properties of the engine and thereby alter exhaust emissions. Over the course of the 
field demonstration, a series of exhaust gas measurements were obtained to evaluate the effect of 
bifuel operation on air emissions. Sample ports were installed on the stack of each engine to 
provide access for emission sampling of the stack gases. All sampling occurred at a nominal 
engine load of 30%, and measurements were collected under both diesel-only and bifuel 
operation. A Testo analyzer was used to measure CO, NOx, and SO2 concentrations, and analysis 
of the gas bag samples provided the NMHC values. All concentrations were converted to a 
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g/BHP*hr basis for comparison. The emission data, summarized in Table 6, show that operating 
the engines in bifuel mode results in an increase in CO and NMHC emissions and a decrease in 
NO when compared to diesel-only operation. Mansour and others (2001) investigated the 
emissions and performance of a bifueled diesel engine and modeled the gas–diesel combustion 
reactions using chemical kinetic reaction mechanisms. They determined that the CO emission 
increase when running in a bifuel mode was caused by nonoptimized pilot timing, flame 
quenching and partial burning. Engine manufacturers may be able to address these issues with 
designs tailored to specific fuel mixes, but little can be done to address these combustion 
properties in existing engines with aftermarket bifuel systems like GTI’s. One solution to address 
the increase in CO and NMHC emissions is the use of oxidation catalysts which are 
commercially available and have been demonstrated to significantly reduce these emissions. The 
average concentrations of NMHCs and NOx also increased when on bifuel. Results from the 
Testo analyzer showed high levels of unburned hydrocarbon in the stack gas when on bifuel, but 
the NOx concentration was unaffected. Analysis of gas bag samples showed that the hydrocarbon 
species present in the stack were in nearly the same proportions as in the feed wellhead gas. This 
is indicative of “slip” which is caused by the overlap in timing of the intake and exhaust valves 
that allows some of the incoming wellhead gas to pass through the cylinder without combusting. 
Under normal diesel-only operation, this slip is just air. However, during bifuel operation, the 
combustion air, mixed with natural gas, can pass through the engine unburned during this valve 
overlap. The SO2 concentration measured at the engine exhaust was below the detection limit and 
consistent with wellhead gas analysis which showed no sulfur compounds were present. 
 
 During preparations for the demonstration project, ECO-AFS installed and commissioned 
the GTI Bi-Fuel systems. At that time, ECO-AFS determined that Engine No. 1 was operating at 
a temperature higher than recommended by OEM. After working with Cyclone Drilling 
mechanics, ECO-AFS diagnosed a bad fuel injector, replaced it, and adjusted the valve timing. 
Following these maintenance items, the GTI Bi-Fuel system was commissioned, and the engine 
operated normally. Shortly after the start of the demonstration, exhaust gas samples were 
collected from each engine and analyzed. The results from this first set of samples are 
summarized in Table 7 and demonstrate a fairly significant difference in emissions among the 
three engines, especially for CO and NMHC. Because maintenance on Engine No. 1 had been 
recently completed, it was theorized that improved valve timing may have contributed to the 
relatively lower CO and NMHC emissions compared to Engine Nos. 2 and 3. 
 
 
Table 6. Summary of Engine Emission Data 

 Average 
CO, 

g/BHP*hr 
 

Average 
NMHC + NOx, 

g/BHP*hr 
 

Average 
NOx, 

g/BHP*hr 

Average 
NO, 

g/BHP*hr 

Average 
SO2, 

g/BHP*hr 
Bi-Fuel On      
Engine No. 1 9.8 7.8 3.3 1.7 <0.005 
Engine No. 2 13.8 14.8 2.4 1.4 <0.005 
Engine No. 3 9.1 7.7 2.7 1.4 <0.005 
Bi-Fuel Off      
Engine No. 1 1.7 3.1 2.9 2.5 <0.005 
Engine No. 2 2.2 3.3 3.1 2.8 <0.005 
Engine No. 3 1.2 3.0 2.8 2.5 <0.005 
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 In an effort to test the theory and improve emissions, Cyclone Drilling mechanics adjusted 
the valve timing on Engine Nos. 2 and 3 and exhaust gas samples were collected and analyzed. 
The maintenance conducted on Engine No. 2 did not appear to impact CO or NMHC emissions 
as illustrated in emission data provided in Table 8. Initial data collected from Engine No. 3 
suggested that valve adjustment had reduced emissions as indicated by Sample Set 2 data 
presented in Table 9. Following the collection of the second set of samples, mechanics replaced 
the injectors on Engine No. 3 (Table 9), and two additional exhaust gas samples were collected 
and analyzed. Although initial analysis suggested an improvement in emissions, subsequent 
Samples 3 and 4 illustrate sufficient variability to prevent conclusive indications of emission 
improvement.  
 
 

Table 7. Initial Engine Emission Comparison 
 Engine No. 1 

Sample 1 Bi-Fuel 
Engine No. 2 

Sample 1 Bi-Fuel 
Engine No. 3 

Sample 1 Bi-Fuel 
CO, g/BHP*hr 9.6 13.9 10.7 
NMHC + NOx, g/BHP*hr 8.5 15.0 7.9 
NOx, g/BHP*hr 3.4 2.6 2.8 
NO, g/BHP*hr 2.0 1.3 1.4 
SOx, g/BHP*hr <0.005 <0.005 <0.005 

 
 

Table 8. Engine No. 2 Emission Measurement Data 
 Sample 1 

Bi-Fuel 
Sample 2 
Bi-Fuel 

Average 
Bi-Fuel 

Average 
Diesel-Only 

CO, g/BHP*hr 13.9 13.7 13.8 2.3 
NMHC + NOx,g/BHP*hr 15.0 14.6 14.8 3.4 
NOx, g/BHP*hr 2.6 2.3 2.5 3.1 
NO, g/BHP*hr 1.3 1.4 1.4 2.8 
SOx, g/BHP*hr <0.005 <0.005 <0.005 <0.005 
 Baseline 

measurement 
Measured after 

valve adjustment 
  

 
 

Table 9. Engine No. 3 Emission Measurement Data 
 Sample 1 

Bi-Fuel 
Sample 2 
Bi-Fuel 

Sample 3 
Bi-Fuel 

Sample 4  
Bi-Fuel 

Average 
Bi-Fuel 

Average 
Diesel-Only

CO, g/BHP*hr 10.7 8.5 7.4 9.9 9.1 1.2 
NMHC + NOx, 
  g/BHP*hr 

7.9 6.6 6.5 9.8 7.7 3.0 

NOx, g/BHP*hr 2.8 2.8 2.7 2.5 2.7 2.8 
NO, g/BHP*hr 1.4 1.3 1.5 1.3 1.4 2.5 
SOx, g/BHP*hr <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 
 Baseline 

measurement 
Measured 
after valve 
adjustment 

Measured 
after fuel 
injector 

replacement 

Replicate 
measurement 
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ECO-AFS was installed on the three diesel engines of Cyclone Drilling Rig No. 28. Wellhead 
gas was supplied via pipeline from a producing well 1600 feet from the drilling location. Results 
showed there were no adverse effects of running on wellhead gas in terms of operability or 
engine operating parameters such as exhaust gas temperature, engine vibration, or ignition delay.  
 
 Specific results from this project included: 
 

1) Reduced diesel fuel use by 16,000–18,500 gallons and associated fuel delivery truck 
traffic. 

 
2) Fuel-related cost savings of nearly $60,000 due to the lower value of wellhead gas 

relative to diesel. 
 

3) Beneficial use of wellhead gas at the point of production. 
 

4) Operating engines in bifuel mode does result in increased carbon monoxide and 
NMHCs when compared to diesel-only engine operation. 

 
5) Seamless operation of the GTI Bi-Fuel system with no impact on drilling operations. 

 
6) Additional fuel savings possible by minimizing diesel-only operation with optimized 

process control and/or operational oversight of the GTI Bi-Fuel system. 
 

7) Bifuel systems operated efficiently with routine engine maintenance. 
 

 Based on the results from this project, the project team estimated the overall effect of 
utilizing otherwise flared wellhead gas to power drilling operations of nearly 200 drilling rigs in 
North Dakota. The result of such broad implementation would include: 
 

1) 1,800,000 Mcf wellhead gas used to power drilling rigs in 1 year (2% of currently 
flared wellhead gas). 
 

2) 18,000,000 gallons of diesel fuel saved in 1 year. 
 

3) $72,000,000 diesel fuel costs saved in 1 year. 
 

4) 3600 fuel delivery trucks (5000-gallon tanker) avoided in 1 year. 
 

5) Air emission reduction can be achieved using commercially available diesel engine 
exhaust gas treatment (catalytic conversion). These technologies are capable of 
reducing CO and NMHC emissions in bifuel-operated engines  to levels similar to 
100% diesel-only operation. 
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 LEGAL NOTICE This research report was prepared by the Energy & Environmental 
Research Center (EERC), an agency of the University of North Dakota, as an account of work 
sponsored by the North Dakota Industrial Commission and the U.S. Army Engineer Research 
and Development Center Construction Engineering Research Laboratory. Because of the 
research nature of the work performed, neither the EERC nor any of its employees makes any 
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, or process disclosed or 
represents that its use would not infringe privately owned rights. Reference herein to any specific 
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise 
does not necessarily constitute or imply its endorsement or recommendation by the EERC. 
 
 
NDIC DISCLAIMER 
 
 This report was prepared by the EERC pursuant to an agreement partially funded by the 
Industrial Commission of North Dakota, and neither the EERC nor any of its subcontractors nor 
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(A) Makes any warranty or representation, express or implied, with respect to the accuracy, 

completeness, or usefulness of the information contained in this report, or that the use of 
any information, apparatus, method, or process disclosed in this report may not infringe 
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(B) Assumes any liabilities with respect to the use of, or for damages resulting from the use of, 

any information, apparatus, method, or process disclosed in this report.  
 
 Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the North Dakota Industrial Commission. The views and 
opinions of authors expressed herein do not necessarily state or reflect those of the North Dakota 
Industrial Commission.  
  



 

 

DEMONSTRATION OF GAS-POWERED DRILLING OPERATIONS FOR 
ECONOMICALLY CHALLENGED WELLHEAD GAS AND EVALUATION OF 

COMPLEMENTARY PLATFORMS 
 
 
ABSTRACT 
 

A project was completed to demonstrate utilization of wellhead gases in North Dakota 
where circumstances temporarily preclude gas gathering. The project includes demonstrating a 
safe and robust method for powering drilling rigs with gaseous fuels and exploring the limits of 
operation. A diesel engine retrofitted with Bi-Fuel® technology enables the simultaneous firing 
of diesel fuel and wellhead gas for rig power. Wellhead gas in North Dakota, from the Bakken 
Formation, is rich in heavier hydrocarbons such as butane, pentane, and hexane which have a 
higher propensity for engine knock which can cause engine damage. Research was completed to 
examine the performance of Bakken gas in a full-scale diesel engine typically used to power a 
drilling operation. Testing was performed over a range of conditions that included fuel 
replacement rates and load beyond the limits of acceptable performance to define boundary 
conditions with Bakken gas. Tests with methane or Bakken gas showed the Bakken gas has a 
higher propensity for knock relative to natural gas. The primary concern regarding engine 
damage is the concentration of pentane and hexane in the Bakken gas, not because these gases 
exist in concentrations that are close to creating knocking, but because the effect is cumulative. 
High concentrations of each may cause excessive knock at higher engine loads. However, the 
proper installation and operation of a Bi-Fuel® system, such as that offered by Altronic, will 
prevent engines from approaching levels of excessive knock by limiting the gaseous fuel 
replacement fraction to levels that have been demonstrated to achieve optimal fuel utilization and 
engine operation.  
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DEMONSTRATION OF GAS-POWERED DRILLING OPERATIONS FOR 
ECONOMICALLY CHALLENGED WELLHEAD GAS AND EVALUATION OF 

COMPLEMENTARY PLATFORMS 
 
 
EXECUTIVE SUMMARY 
 

Testing was conducted to evaluate the operational limits of a 3512 Caterpillar diesel engine 
when fueled simultaneously with natural gas and diesel. The gases studied include methane, a 
simulated Bakken Formation wellhead gas, and several heavier hydrocarbons ranging from C3 to 
C6 each tested separately with methane. The primary interest of the study is to understand how 
heavier hydrocarbons, present at concentrations of up to 50% in Bakken gas, impact engine 
performance as measured by knock, cylinder pressure, and ignition delay. Testing was conducted 
over a range of diesel replacement ratios and load in order to establish the limits of acceptable 
engine performance. Understanding the performance limits will help protect engines against 
potential damage and improve the performance of fumigation-based Bi-Fuel® systems from 
Altronic. Further, data collected from these experiments will be used to establish operating 
conditions for subsequent field demonstrations on a drilling rig to ensure reliable engine 
operation, optimal fuel utilization, and economic benefit from reduced diesel fuel consumption. 
 

The results and conclusions from this study are as follows:  
 

 It was demonstrated that a diesel engine can operate in a Bi-Fuel® mode with simulated 
Bakken Formation gas at replacement rates exceeding 40%. A properly installed and 
operating Bi-Fuel® system can be used to supply Bakken Formation wellhead gas to a 
diesel engine while protecting the engine from knock. 

 
 At low engine load and high replacement rates, unburned hydrocarbon was measured in 

the stack. To avoid this condition in field operations, the Bi-Fuel® system is designed 
with instrumentation and a control system that monitor engine performance to ensure 
proper fuel combustion and smooth engine operation. When it is desirable to vary a 
diesel replacement rate as load varies, the STEPCON® (stepped control) can be utilized. 
To verify effective gaseous fuel utilization, emission testing will be incorporated into 
the field demonstration. 

 
 At higher engine load, near 60%, engine knock did occur when Bakken gas was 

fumigated at 70% replacement rates, well above typical Bakken gas operating limits. 
The actual replacement rate based on diesel fuel consumption was approximately 40%. 
Under these conditions, unburned fuel was measured in the exhaust. The presence of 
some unburned hydrocarbon in the exhaust can be attributed to the normal engine 
aspiration cycle. However, some may also be attributed to the age of the engine and the 
relatively low compression ratio of 13:1. Emission testing will be conducted during 
subsequent field demonstrations to verify that complete fuel utilization is occurring 
under typical operating conditions.  

 



 

vi 

 The ignition delay and peak cylinder pressure data collected during these tests are 
consistent with knock data and indicate that replacement of diesel fuel with a Bakken 
Formation gas is lower than can be achieved with high-methane pipeline gas. 

 
 The components of Bakken Formation gas (C3–C6) individually with methane do not 

cause knock when blended at typical concentrations. However, when blended at high 
rates, the pentane and hexane did cause engine knock. The individual limits appear to be 
around 2.5%–3.0%. The effect of the higher hydrocarbons is more than likely 
cumulative since knock was observed at high replacement rate with simulated Bakken 
gas in which the pentane and hexane concentrations were nominal. Results from the 
tests with the individual gases provide useful qualitative information but do not enable 
predictions on how mixed gases impact engine performance.  
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DEMONSTRATION OF GAS-POWERED DRILLING OPERATIONS FOR 
ECONOMICALLY CHALLENGED WELLHEAD GAS AND EVALUATION OF 

COMPLEMENTARY PLATFORMS 
 
 
INTRODUCTION 
 

Adaptation of the diesel engines to operate on a mixture of diesel and natural gas is known 
as dual-fuel or Bi-Fuel® technology. The terminology is used interchangeably and is intended to 
refer to the firing of diesel fuel and natural gas simultaneously in a diesel engine. The 
International Association for Natural Gas Vehicles defines the terms differently from the U.S. 
Environmental Protection Agency (EPA) and the California Air Resources Board (CARB). In 
the United States, dual fuel (simultaneous firing) is marketed as a Bi-Fuel® system because of the 
EPA and CARB definitions, which define a dual-fuel vehicle as having the option to fire only 
one fuel at a time.  
 

The GTI Bi-Fuel® system, supplied from Altronic, is currently being used in the oil and 
gas industry in drilling operations, where Caterpillar engines are common prime movers for 
drilling rigs. Therefore, this project utilized equipment from these manufacturers.  
 

A Bi-Fuel® system operates by fumigating natural gas into the air intake of the diesel 
engine. Combustion of the natural gas is initiated from the pilot ignition of diesel fuel injected in 
the combustion cylinder. A Bi-Fuel® system has the ability to switch fuel modes without 
interruption in engine power output. The engine can be switched between diesel and gas 
automatically while maintaining speed and load. The engine can be automatically switched to 
100% diesel mode during operations above the programmed power limit, thus avoiding the 
necessity to derate the engine. Figure 1 is the load profile for a typical drilling rig over roughly 
17,000 hours of operation. The load varies substantially, and a STEPCON® (stepped control) gas 
control manifold (GCM) system provides for adjustment of the gas substitution rate according to 
a programmed map of gaseous fuel vs. load. The various components of the Bi-Fuel® system are 
installed externally to the engine. No engine disassembly is required, and no engine 
modifications are required for installation. All original equipment manufacturer (OEM) engine 
specifications for injection timing, valve timing, and compression ratio will remain unchanged 
after installation. The Bi-Fuel® system requires a low-pressure natural gas supply (approximately 
2–3 psi) with a minimum flow rate of 8 scfh/kW. The control panel is Class 1 Division 2 Group 
D, suitable for environments where petroleum vapors may be present at less than 10 hours a year. 
A schematic of the Altronic GTI Bi-Fuel® system is provided in Figure 2. The standard GTI 
system monitors gas pressure, intake air restriction, manifold air pressure and temperature, 
exhaust gas temperature, and engine vibration to control fumigated gas replacement. The 
STEPCON® version also monitors generator power.  
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The vast majority of Bi-Fuel® systems operate using pipeline natural gas; consequently, 
more data and experience are available for fuels with greater methane purity. Bakken Formation 
gas is rich in natural gas liquids (NGLs) such as ethane through hexane and accounts for over 
50% of the gas produced in North Dakota (1). Engine systems are designed based on internal 
combustion properties of the fuel. Table 1 provides gas characteristics and the relative fuel 
properties of the pure gas components found in Bakken Formation gas (2–4). Table 2 provides 
the combustion characteristics for the same gases. Notice that the NGLs of higher carbon 
numbers are lower octane, which means they have less knock resistance and, therefore, a lower 
critical compression ratio relative to autoignition. Mixing NGLs with methane lowers the fuel’s 
resistance to knock and, therefore, requires greater understanding to better tune an engine for 
Bakken Formation gas applications in Bi-Fuel® systems.  
 
 

Table 1. Characteristics of NGL Components and Compositions  
 

Dry Pipeline 
Gas

Bi-Fuel® System— 
Recommended Gas 

Quality

Example 
Bakken 
Gas, % 

Octane 
Number, 

motor
Methane, CH4 92.2% >92% 55 120
Ethane, C2H6 5.5% <8% 22 99
Propane, C3H8 0.3% <8% 13 97
Butane, C4H10  

<2% combined total 
butane – heptane 

5 90
Pentane, C5H12   1 63
Hexane, C6H14   0.25 26
Heptane, C7H16   0.1 0
Nitrogen, N2 1.6%   3 
Carbon Dioxide, CO2 0.4%   0.5 
HHV,1 Btu/scf 1041     
LHV,2 Btu/scf 937     
Methane Number 82.8     

 1 Higher heating value. 
 2 Lower heating value. 
 
 
Table 2. Combustion Characteristics of Component Gases 
 

Critical 
Compression Ratio

Autoignition 
Temperature, 

°F
LFL,1 

%
UFL,2 

% 

Octane 
Number, 

motor
Methane, CH4 12.6 1076–1200 4–4.5 15–17 120
Ethane, C2H6 12.4 959 3 12–12.4 99
Propane, C3H8 12.2 896 2.1 9.5–10.1 97
Butane, C4H10 5.5 788–932 1.6 8.4 90
Pentane, C5H12 4.0 500–788 1.5 7.8 63
Hexane, C6H14 3.3 437–451 1.1 7.5 26
Diesel Fuel NA 410–750 0.6 7.5 NA

1 Lower flammability limit. 
2 Upper flammability limit. 
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Normal fuel combustion produces a pressure rise inside the engine cylinder at a predictable 
rate and peak. The combustion in a diesel engine is controlled by the injection rate of diesel fuel 
into the cylinder. Critical to diesel engine design is the compression ratio and the appropriate 
ignition delay period for the fuel. Ignition delay is the period between the start of injection and 
autoignition of the fuel. A designer strives for the appropriate ignition delay, for once the 
mixture of fuel and air autoignites, all of the fuel already injected burns very quickly. Too much 
fuel charge or too high of a compression ratio can result in intolerable knocking in a diesel 
engine. Engine knock is the noise generated from undesirable sporadic autoignition of the fuel in 
the engine cylinder. During audible knock, the pressure produced inside the cylinder is erratic 
and creates forces that lead to catastrophic engine damage such as piston pitting and physical 
cylinder head failure. In a Bi-Fuel® engine, autoignition of the fumigated gas is unlikely to result 
from piston compression. Natural gas ignites at a much higher temperature (1076°–1200°F) 
compared to diesel fuel (410°–750°F) (5); however, a significant amount of fuel is precharged in 
the cylinder prior to injection of diesel. The injection of diesel is the source for ignition of the 
gaseous fuel; therefore, careful consideration is required to ensure the fuel charge does not burn 
uncontrollably upon ignition. 
 

Fuels have been commonly characterized relative to their performance in piston engines. 
Spark-ignited engines are normally used to fire gaseous fuels and gasoline-based vapors. The 
ignition timing and compression ratio of spark-ignited engines are critical variables relative to 
proper fuel combustion. Octane rating or octane number is a standard measure of the 
performance of spark-ignition fuels. The octane rating of gasoline is measured in a test engine 
and is defined by comparison with the mixture of 2,2,4-trimethylpentane (isooctane) and heptane 
that would have the same antiknocking capacity as the fuel under test: the percentage, by 
volume, of 2,2,4-trimethylpentane in that mixture is the octane number of the fuel. A fuel with a 
rating of 90 octane means that the fuel has the same detonation resistance as 90% isooctane with 
10% heptane. Octane ratings of over 100 are possible because some fuels are more knock-
resistant than isooctane. Methane is a good example, with an octane rating of 120. 
 

Cetane number is a measure of the combustion quality of diesel fuel during compression 
ignition. It is a significant expression of the quality of a diesel fuel. Cetane number is a measure 
of a fuel’s ignition delay, which is the time period between the start of injection and the first 
identifiable pressure increase during combustion of the fuel. CN is measured by burning the fuel 
in a Cooperative Fuel Research (CFRTM) engine under standard test conditions. The compression 
ratio of the CFR engine is increased until the time between fuel injection and ignition is 2.407 
ms. The resulting cetane number is then calculated by determining which mixture of cetane 
(hexadecane) and isocetane (2,2,4,4,6,8,8-heptamethylnonane) will result in the same ignition 
delay. In a particular diesel engine, higher cetane fuels will have shorter ignition delay periods 
than lower cetane fuels. CNs are only used for diesel fuels and do not apply to gaseous fuels. In 
short, the higher the CN is, the more easily the fuel will combust in a compression setting such as 
a diesel engine. 
 

In a spark-ignition engine, the higher the octane number, the more compression the fuel 
can withstand before detonating. Fuels with a higher octane rating are used in high-compression 
engines that generally have higher performance. In contrast, fuels with low octane numbers (but 
high cetane numbers) are ideal for diesel engines. However, fuels rated for high knock resistance 
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in spark-ignition engines should not be confused with the performance of compression-ignition 
fuels that are used in diesel engines which have significantly higher compression ratios than 
spark-ignited engines. 
  

It is important to understand the fuel characteristics relative to both knock and 
compression-ignition characteristics for Bi-Fuel® operations. A diesel engine fitted with a Bi-
Fuel® system relies on compression to ignite diesel fuel which, in turn, provides the spark to 
ignite the gaseous fuel. It is in this sense that both octane (knock) and cetane (ignition delay) 
performance are relevant characteristics of the subject fuels. Previous work relative to fuel 
performance in Bi-Fuel® engines has provided considerable insight to the current study.  
 

Performance of gaseous fuels fired in diesel engines is primarily measured by recording 
the pressure rise in the cylinder versus the crank angle. Such data can indicate extreme pressure 
rise because of detonation of the fuel and provide the characteristics of ignition delay. Generally, 
long ignition delay results in unburned hydrocarbons and lower efficiency. Ignition that is too 
advanced can result in knock.  
 

Papagiannakis and others (6) measured the performance of single cylinder Lister LV1 
direct injection diesel engine fitted with a natural gas supply to the engine air intake. The 
compression ratio of the engine was 17.6:1, and injection timing set to 26 degrees before top 
dead center (BTDC). The power output of the engine is 6.7 kW at 3000 rpm. Figure 3 
demonstrates the decrease in cylinder pressure and ignition lag as greater amounts of diesel fuel 
are displaced with natural gas at constant load, engine speed, and brake mean effective pressure. 
The peak pressure difference between diesel fuel operation and 86% replacement of diesel fuel 
with natural gas is about 3–4 degrees of crank angle. It can generally be concluded that adding 
methane only to a diesel engine presents a low risk for engine knock. 
 

Propane or liquefied petroleum gas (LPG), normally a mix of propane and butane, has 
been studied in dual-fuel diesel engines (7, 8). Bakken gas propane composition can be greater 
than 13%. Propane can have a higher likelihood for knock because of the higher energy density 
(2.5X) and lower octane rating (97 vs. 120) relative to methane. At 40% diesel replacement and 
full load, the optimum blend of propane and butane for firing in a diesel engine was found to be 
70% propane and 30% butane (7). Anstalt für Verbrennungskraftmaschinen (AVL) research 
engines are commonly used to study piston engine combustion phenomenon. An AVL 5402 
research engine was converted by Le and Nguyen (7) to operate as a dual-fuel diesel with LPG 
supplied to the engine air intake. The compression ratio for this engine was 17.3:1 and rated for  
9 kW at 3200 rpm. Pressure versus crank angle data were collected for various amounts of LPG 
used to replace diesel fuel, Figure 4. As LPG was added to the engine, the peak pressure 
increased, the ignition lag decreased, and the knocking tendency increased. During combustion, 
propane or LPG has the exact opposite effect of methane. Le and Nguyen also experimented with 
advancing the injection timing in the range of 14–24 degrees BTDC, Figure 5. Advancing the 
timing produced higher cylinder pressure rise at 20% replacement and full load operation at  
2000 rpm. Experiments with changing the amount of diesel pilot produced little effect on the 
pressure rise or ignition lag. 
 



 

Figure 3
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EXPERIMENTAL SETUP 
 
The experimental setup included the following:  
 

 A 3512 Caterpillar diesel engine provided by Butler Machinery  
 Altronic GTI Bi-Fuel® system  
 Gas delivery system  
 Data acquisition and control system  
 Load bank-resistive  

 
 The diesel engine was retrofitted with a GTI Bi-Fuel® system that allows the engine to run 
on a mixture of diesel fuel and natural gas. The specifications for the engine are presented in 
Table 3. A schematic of the Bi-Fuel® system is shown in Figure 2. The system utilizes a 
fumigation gas delivery method whereby gas is delivered to the cylinders via the standard engine 
air intake system and is ignited by a diesel “pilot” which acts as an ignition source for the air–gas 
mixture. The GTI system is independently capable of monitoring the following: 
 

 Gas supply pressure 
 Manifold air pressure 
 Manifold air temperature 
 Air filter vacuum 
 Exhaust gas temperature 
 Engine vibration 
 Regulated output pressure 
 Optional kW output 

 
These values were supplied to an external data acquisition system and logged. Protection is 

provided by the Bi-Fuel® system by shutting off the gas supply and returning the engine to 100% 
diesel operation in the event any safety threshold is breached, including excessive engine 
vibration. The transition is quick and does not interrupt engine speed, power, or stability.  
 

A gas delivery system was configured to supply methane, ethane, propane, butane, 
pentane, and hexane in controlled amounts to the inlet of the Bi-Fuel® system at a constant 
pressure. A schematic of the system is provided in Figure 8. Mass flow controllers were used to 
regulate the flow of the various gas vapors. Propane was drawn from the tank as a liquid and  
 
 
Table 3. Diesel Engine Specifications 
Engine Caterpillar 3512 (four-stroke cycle) 
Cylinders 12
Bore, mm (in.) 170 (6.7)
Stroke, mm (in.) 190 (7.5)
Aspiration Turbocharged, after-cooled 
Compression Ratio 13:1*
Speed, rpm 1800
Engine Power, hp (kWe) 1592 (1100)
* Compression ratio of the test engine is lower than those referenced in literature. 
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a manageable size. Type K thermocouples were installed in the exhaust port of each cylinder. A 
FloScan fuel meter was used to measure fuel consumption rates. A Testo 350 M/XL portable flue 
gas analyzer was used to measure the stack temperature and concentrations of NOx, SO2, O2, CO, 
and CxHv. The data from the analyzer were logged manually. 
 
 
PROCEDURE 
 

Based on the literature review and the data available for Bakken Formation gas 
composition, a test matrix was developed that would explore the limits of operation using a 
Bakken Formation wellhead gas; see Table 4, Test Sequence 8, 9, and 10. The procedure for the 
baseline tests was to fire the engine on 100% diesel at increasing loads. At each load setting, the 
engine was allowed to reach steady state before cylinder pressure data were logged. The other 
operational data, including knock, were logged automatically. The second series of tests included 
adding natural gas. Again, the engine was operated at increasing loads. At each load setting, 
natural gas fumigation was started, and the rate was increased until the natural gas being 
fumigated was sufficient to replace 70% of the diesel fuel on a Btu basis. All diesel replacement 
values were calculated based on a Btu basis. At this point, cylinder pressure data were logged. 
The procedure for the third series of tests using a simulated Bakken gas was run. The 
composition of the simulated Bakken gas is presented in Table 4. During these tests, the flow 
rates for the lighter hydrocarbons were set first (methane, ethane and propane) followed by the 
gradual increase of the flow rates of the butane, pentane, and hexane. Similar to the tests with the 
individual gases, there were instances where knock tripped the GTI system. Finally, a series of 
tests were completed to evaluate the contribution of the individual component hydrocarbon gases 
that may contribute to knock. The procedure used for these tests was similar to that used for the 
methane-only tests. The engine was brought up to load, and the methane fumigation was 
increased to the predetermined level for 70% replacement equivalent. The blending rate for the 
individual gases was then gradually increased to either the predetermined maximum or until 
knock prevented further increase. In some instances, the knock caused the GTI system to trip, 
and pressure data were not collected. When this happened, the test was repeated at either a lower 
overall replacement rate or a decreased rate of the individual gas. These procedures were 
followed to characterize the emissions and combustion performance, including the collection of 
knock data and cylinder pressure data versus crank angle. The test matrix did not included tests 
with methane and ethane alone because of a limited supply of ethane, and ethane was not 
expected to have a significant contribution to knock.  
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Table 4. Test Matrix 
Test 
No. 

Load, 
% 

Diesel 
Replacement, % 

Methane, 
mol% 

Ethane, 
mol% 

Propane, 
mol% 

Butane, 
mol% 

Pentane, 
mol% 

Hexane, 
mol% 

1 20 0 0 0 0 0 0 0 
2 40 0 0 0 0 0 0 0 
3 60 0 0 0 0 0 0 0 
4 100 0 0 0 0 0 0 0 
5 20 70 100 0 0 0 0 0 
6 40 70 100 0 0 0 0 0 
7 60 70 100 0 0 0 0 0 
8 20 Up to 70 56.1 23.1 13.9 4.9 1.1 0.9 
9 40 Up to 70 56.1 23.1 13.9 4.9 1.1 0.9 
10 60 Up to 70 56.1 23.1 13.9 4.9 1.1 0.9 
11 20 70 Balance 0 Up to 30 0 0 0 
12 40 70 Balance 0 Up to 30 0 0 0 
13 60 70 Balance 0 Up to 30 0 0 0 
14 20 70 Balance 0 0 Up to 20 0 0 
15 40 70 Balance 0 0 Up to 20 0 0 
16 60 70 Balance 0 0 Up to 20 0 0 
17 20 70 Balance 0 0 0 Up to 4% 0 
18 40 70 Balance 0 0 0 Up to 4% 0 
19 60 70 Balance 0 0 0 Up to 4% 0 
20 20 70 Balance 0 0 0 0 Up to 4% 
21 40 70 Balance 0 0 0 0 Up to 4% 
22 60 70 Balance 0 0 0 0 Up to 4% 

 
 
RESULTS 
 

The objective of the testing was to evaluate the knock characteristics and determine the 
operational limits of a typical Bakken Formation wellhead gas. The diesel engine was outfitted 
with two Metrix model 16VTS vibration transmitters as part of the GTI conversion package. 
These sensors were tied into the GTI control system and shut down gas flow to the engine if the 
knock signal exceeded a predetermined level. For these tests, the allowable upper limit of the 
knock sensors was increased for better resolution of the knock data. Even at the increased upper 
limit, the engine was still protected from excessive knock. The knock sensors were located next 
to the No. 4 and No. 5 cylinders on opposite sides of the engine. Baseline testing showed that the 
two vibration sensors did not always agree. Part of the issue was solved by rerouting the signal 
wires to the GTI control unit. One of the sensors was also mounted to a painted surface which 
the GTI personnel fixed. However, even with these fixes, there were still discrepancies between 
the two sensors. The installation procedure requires the mounting surface be prepared with a 
surfacing tool to ensure the transmitter makes contact all the way around its base surface. Since 
the one transmitter was mounted to a painted surface, it is uncertain how good the contact was 
after the paint was removed. The sensor with the largest reading was used to determine knock 
and control the GTI system.  
 

Figure 9 plots the vibration sensor output for the baseline tests where the engine was 
operated with increasing engine load firing only diesel fuel. The knock for the left sensor at 20% 
load was noisier than the right and noisier than expected. Figure 10 plots another time period at 
20% load with only diesel fuel that has more typical knock readings, suggesting the high knock 
reading in Figure 9 is not typical. Overall, the knock only increases slightly from 20% to 100% 
load. 
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The ignition delay and peak cylinder pressure data collected during these tests are 
consistent with knock data and indicate that replacement of diesel fuel with a Bakken Formation 
gas is lower than can be achieved with high-methane pipeline gas.  
 

The components of Bakken Formation gas (C3–C6) individually with methane do not 
cause knock when fumigated at typical concentrations. However, when fumigated at high rates, 
the pentane and hexane did cause engine knock. The individual limits appear to be around 2.5%–
3.0%. The effect of the higher hydrocarbons is more than likely cumulative since knock was 
observed at high replacement rate with simulated Bakken gas in which the pentane and hexane 
concentrations were nominal. Results from the tests with the individual gases provide useful 
qualitative information but do not enable predictions on how mixed gases impact engine 
performance.  
 
 Although the simulated Bakken gas mix utilized was formulated to be consistent with that 
available at the wellhead, even the most simplistic conditioning, whether intentional or 
unintentional, may result in wellhead gas delivered to the engine with considerably less heavier 
hydrocarbons than from the source. This may result in higher replacement rates achieved in the 
field over what was seen in laboratory tests. 
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END-USE TECHNOLOGY STUDY – AN ASSESSMENT OF  
ALTERNATIVE USES FOR ASSOCIATED GAS 

 
 
ABSTRACT 
 

The Energy & Environmental Research Center (EERC) in partnership with the North 
Dakota Industrial Commission Oil and Gas Research Council, Continental Resources, and the 
U.S. Department of Energy National Energy Technology Laboratory conducted a study focused 
on assessing the technical and economic viability of technologies and processes that could lead 
to increased utilization of associated gas. The impetus for this study was derived from the rapid 
growth of gas flaring in North Dakota, itself a function of rapid increase in oil production. This 
final report summarizes EERC assessments of distributed end-use opportunities that were 
evaluated for their potential to contribute to significant reductions of gas flaring in liquids-rich 
shale formations like the Bakken Formation in North Dakota. 
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END-USE TECHNOLOGY STUDY – AN ASSESSMENT OF  
ALTERNATIVE USES FOR ASSOCIATED GAS 

 
 
EXECUTIVE SUMMARY 

 
The Energy & Environmental Research Center (EERC), in partnership with the North 

Dakota Industrial Commission (NDIC) Oil and Gas Research Council (OGRC), Continental 
Resources, and the U.S. Department of Energy (DOE) National Energy Technology Laboratory 
(NETL), has conducted a study focused on assessing the technical and economic viability of 
technologies that could increase utilization of associated gas. The impetus for this study is the 
rapid growth of gas flaring in North Dakota, a function of rapid increase in oil production. The 
stranded gas resource is a transient resource, permitted by the state to be flared for up to 1 year, 
changing in quantity and location as oil wells begin production and gas-gathering infrastructure 
gets constructed, thereby creating a challenge to mating an end-use technology to the resource. 

 
The intent of this study is to examine technologies that can utilize the associated gas at 

locations upstream of traditional natural gas-processing plants, thereby extracting value from a 
currently uncaptured resource. Economic analysis of these technologies consisted of comparing 
capital expenses to potential revenue generation in an effort to frame the potential for more 
detailed economic study specific to individual technology. Technologies evaluated included 
1) natural gas liquid (NGL) recovery, 2) compressed natural gas (CNG) for vehicle fuel, 
3) electrical power generation, and 4) chemical production. 

 
Bakken associated gas is typically low in sulfur and high in NGLs, creating both unique 

challenges to utilization and economic opportunity since NGLs are currently more valuable than 
the dry NG. Deploying small-scale NGL recovery systems as an interim practice while gathering 
lines are built allows the highest value and most easily transported hydrocarbons to be marketed. 
Further, the leaner gas generated from these systems can be more easily utilized for power, 
transportation fuel, or transported as a compressed gas. Clearly, NGL recovery would be most 
economical at wells flaring larger quantities of gas, immediately after production begins to 
capture the greatest volume of gas. Additionally, technology mobility is critical to enable 
relocation to new wells as gas-gathering infrastructure is constructed. 

 
While there may be several other drivers to warrant the use of CNG in the Bakken region, 

economics alone will most likely not justify conversion of medium-sized fleets of vehicles to 
CNG if a distributed CNG refueling approach is taken. Bakken associated gas is too rich with 
NGLs and too variable in composition to be used “as-is” in NG vehicles (NGVs). It must be 
purified to a strict specification and compressed before being dispensed to a vehicle. Further, 
vehicle fleets utilizing the CNG fuel would need to be adaptable and flexible to take advantage 
of this stranded and transient gas resource. In spite of these drawbacks, U.S. Energy Information 
Administration (EIA) data indicate that CNG prices have been significantly lower and 
experienced less volatility over the past decade when compared to gasoline and diesel fuels, and 
the price gap is expected to continue through 2015. 

 
The demand for power in the Williston Basin has grown rapidly. In addition to meeting 

this growing demand, utilities are also faced with ensuring grid reliability. Forecasts suggest a 
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tripling of the electric load in oil-producing areas of western North Dakota and eastern Montana. 
An initial review of the characteristics of each distributed power generation technology 
eliminated some options from further consideration. Based on this review, three technologies 
were evaluated: reciprocating engine, gas turbine, and microturbine. When evaluating power 
generation scenarios, the projects were characterized into two distinct categories based on the 
primary use of the electricity, grid support and local power. In general, power production using 
rich associated gas is a viable option. A wide variety of power generation technologies exist that 
can, without much difficulty, utilize rich gas of varying quality to produce electricity and are 
scaled to wellhead flow rates. 

 
The petrochemical industry is dominated by large processing plants where economy of 

scale and access to large gas fields maximize profitability. Despite rapid and significant growth 
of gas production in North Dakota, only a small fraction of total U.S. NG is produced in the 
state. Pipeline and rail export of gas and NGLs to existing petrochemical infrastructure is likely 
to continue to be the predominant mode to market these resources. Although NG export is likely 
to dominate in North Dakota, opportunity does exist for small-scale technologies that can convert 
low-cost gas to higher-value chemicals or fuels that have a strong regional demand. The 
production processes with the best opportunity for economic success at the well site include 
novel fertilizer production technologies or innovative gas-to-liquid approaches that can be scaled 
appropriately. All such processes would benefit by being mobile to periodically relocate to 
better-producing wells and avoid reduced utilization rates. 

 
Although none of these approaches appear to be highly compelling from a purely 

economic perspective, two end-use technologies were identified that represent technically 
feasible applications: CNG and power production. The high price of transportation fuel relative 
to CNG creates some advantages; however, rich gas cannot be used in standard NGVs because of 
concerns over emissions and engine performance. In the case of power production, these 
technologies match nicely the scale and temporal nature of the associated gas resource. In either 
case, small-scale NGL recovery, although less efficient than at large centralized facilities, may 
be an enabling technology, allowing value to be extracted from the associated gas while 
improving economical utilization of leaner gas for transportation and power. Chemicals 
production would be the most challenging to deploy at small scale in the Williston Basin, but 
some chemicals (specifically nitrogen-based fertilizers) may hold some promise. 

 
Table ES-1 is a summary of the end-use technologies evaluated and their respective 

characteristics as they relate to deployment in the Williston Basin. 
 
 

Table ES-1. Summary of Evaluated Technologies with Qualitative Characteristics 
 
 
Technology 

 
Gas Use 

Range, Mcfd 

 
NGL Removal 
Requirement 

  
Scalability to 

Resource 

 
Ease of 

Mobility 

Likelihood of 
Deployment at 

Small Scale 
Power – Grid Support 1000–1800 Minimal Very scalable Very easy Very likely 
Power – Local Load 300–600 Minimal Very scalable Very easy Very likely 
CNG 50+ Yes Scalable Very easy Possible 
Chemicals 1,000,000* No Not scalable Not mobile Very unlikely 
Fertilizer 300–2000 No Scalable Not easy Possible 
Gas-to-Liquids 1,000,000* No Scalable Easy Possible 
* Typical commercial-scale plant. 
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END-USE TECHNOLOGY STUDY – AN ASSESSMENT OF  
ALTERNATIVE USES FOR ASSOCIATED GAS 

 
 
INTRODUCTION 

 
The Energy & Environmental Research Center (EERC), in partnership with the North 

Dakota Industrial Commission (NDIC) Oil and Gas Research Council (OGRC), Continental 
Resources, and the U.S. Department of Energy (DOE) National Energy Technology Laboratory 
(NETL), has conducted a study to assess the technical and economic viability of technologies 
and processes that could lead to increased utilization of associated gas. The scope of this study 
included evaluating distributed end-use opportunities that may benefit from the rapid expansion 
of oil and gas production in shale formations like the Bakken Formation in North Dakota. 

 
In North Dakota, oil production increased to 534,000 barrels per day (bpd) by the end of 

2011, up twofold in only 2 years. This rapid growth in oil production has led to an increase in the 
amount of associated gas that is flared while gas-gathering, processing, and transmission 
infrastructure are built to accommodate the new production. In spite of dramatic investment and 
expansion of gas-processing infrastructure, around 30% of North Dakota’s produced natural gas 
is flared, nearly 190,000 thousand cubic feet (Mcf)/day or 1,500,000 gasoline gallon equivalent 
(GGE)/day. 

 
This gas resource, although underutilized, is not a low-value by-product of oil production. 

Bakken shale gas is rich in natural gas liquids (NGLs). Therefore, although natural gas prices are 
at a historic low—approximately 10% of the value of crude oil on an energy-equivalent basis—
the high concentration of NGLs, ethane, propane, butane, and higher-carbon-number 
hydrocarbons, supports the economic push to gather and process gas. Typical Bakken gas may 
contain as much as 10 gallons of NGLs per 1 Mcf of wellhead gas. These NGLs, when recovered 
from the gas during gas processing, provide economic incentive to build the necessary 
infrastructure to prevent flaring. 

 
North Dakota, a rural state, possessed limited NG infrastructure prior to the recent increase 

in oil and gas production activity. Construction of gas-gathering pipeline, gas-processing plants, 
and interstate pipeline is proceeding rapidly, with industry planning to invest $3 billion between 
2011 and 2014. For a period of time, gas flaring is likely to continue; however, it is widely 
expected that as production activities mature in the Bakken play, gas gathering and infrastructure 
will meet the demand. Currently the North Dakota Century Code allows gas to be flared for up to 
12 months after initial production. After that, gathering piping is expected to be connected to 
new well sites, and gas must be marketed. Nonetheless, an opportunity exists for the next several 
years to utilize newly produced, otherwise flared associated gas before gathering infrastructure is 
fully built out. Longer term, opportunity will continue because of the existence of a small 
fraction of wells that, because of geography or economics, may not be connected to gas-
gathering systems. 

 
The expectation of the study when proposed was to evaluate a number of known 

technologies and assess their applicability to distributed operation with associated gas containing 
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Table 12. Summary of Bakken Wells Flaring Gas Based on Rates/Day –  
December 2011 Data 
Flaring Rate, 
Mcf/day 

Number 
of Wells 

Percent of Total, 
No.-of-wells basis* 

Total Gas Flared 
December, Mcf 

Percent of Total, 
flared-volume basis 

<1 1695 53.4 2331 0.1 
1–299 1325 41.7 2,178,842 49.9 
300–599 103 3.2 1,017,536 23.3 
600–899 26 0.8 463,634 10.6 
900–1199 17 0.5 457,220 10.5 
1200–1499 4 0.1 87,378 2.0 
1500–1999 3 0.1 70,974 1.6 
>2000 2 0.1 89,621 2.1 
Total 3175 99.9 4,367,536 100.1 
* Does not equal 100% because of rounding. 

 
 

This study focused on the opportunity for utilization of associated gas from initial wells 
drilled on a lease. Associated gas will be available in greater quantities as infill wells are 
installed, and thus may impact the applicability of certain technologies investigated in this study. 
It was reasoned that by the time multiple wells are in production, gas-gathering infrastructure 
will be in place. For this reason and others stated in the report, the authors view the window of 
opportunity for application of these technologies to be during the initial few months when gas 
production is at its highest and not as a long-term installation. In most scenarios considered, once 
gas production has declined sufficiently, the equipment would be mobilized to a new well to 
capture initial production. 
 

Quality/Physical Characteristics 
 

NG at the wellhead commonly exists as a mixture of methane (C1) with other 
hydrocarbons, including ethane (C2), propane (C3), butane (C4), pentane (C5), hexane, and 
higher (C6+). These higher-carbon-number hydrocarbons are often referred to as NGLs. 
Wellhead NG also contains other compounds such as water vapor, hydrogen sulfide, carbon 
dioxide, oxygen, and nitrogen. A random sample of Bakken region wellhead gas quality data is 
presented in Table 4. 

 
Bakken associated gas is typically low in sulfur and high in NGLs. This high NGL content 

typically corresponds with higher energy content (1300–2000 Btu/ft3) when compared to 
residential pipeline gas (~1000 Btu/ ft3). These NGLs pose unique challenges to utilization, both 
economically and practically.  

 
Although gas composition can vary within Bakken wells, a gas composition was assumed 

for the purposes of this study and is presented in Table 5. In addition to the composition in 
Table 5, the energy content was assumed to be 1400 Btu/ ft3. 
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Table 13. Select Associated Gas Quality Data from Wellheads in the Bakken Formation in 
North Dakota1 
Wellhead: A B C D E F G 
C1, mol% 70.23 48.07 73.93 50.79 68.05 52.9 66.17 
C2, mol% 13.94 18.78 13.25 15.73 14.2 11.32 13.15 
C3, mol% 6.7 14.87 5.55 11.61 8.05 8.52 7.01 
C4+, mol% 5.5 16.38 4.32 14.42 6.22 6.46 9.37 
CO2 + N2, 
mol% 

3.44 1.72 2.87 7.29 3.43 19.8 4.18 

H2S 0.19 0.18 0.08 0.16 0.05 1.00 0.12 
Wobbe Index, 
  Btu/scf 

1470 1712 1454 1563 1491 1207 1519 

Methane No. 
  (MN) 

53.2 43.5 56.1 44.9 51.6 49.2 48.7 

1 Data from a randomly selected set of wellhead gas analysis provided to the EERC by a number of North Dakota 
operators. 
 
 

Table 14. Assumed Bakken Gas Composition 
Component mol% 
H2O (water) 0.02 
N2 (nitrogen) 5.21 
CO2 (carbon dioxide) 0.57 
H2S (hydrogen sulfide) 0.01 
C1 (methane) 57.67 
C2 (ethane) 19.94 
C3 (propane) 11.33 
I-C4 (isobutane) 0.97 
N-C4 (n-butane) 2.83 
I-C5 (isopentane) 0.38 
N-C5 (n-pentane) 0.55 
C6 (hexane) 0.22 
C7 0.09 
C8 0.04 
C9 0.01 
C10–C11 0.00 
C12–C15 0.00 

 
 

Production, Processing, Transport, and Distribution 
 

NG processing acts to separate heavier hydrocarbons (ethane, propane, butane, etc.) and 
other contaminants (sulfur, nitrogen, oxygen, water, etc.) from the pure natural gas, to produce 
what is known as “residue gas” or “pipeline-quality” dry NG. Independent transportation 
pipelines impose varying restrictions on the makeup of the gas that can be injected into the 
pipeline. 
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Water Removal 
 

In addition to separating oil and some condensate from the wet gas stream at the wellhead, 
water vapor that exists in solution in NG is removed via dehydrating processes – either 
absorption or adsorption. Absorption occurs when the water vapor is taken out by a dehydrating 
agent. Adsorption occurs when the water vapor is condensed and collected on the surface. These 
processes are generally conducted at a centralized gas-processing plant. 

 
Glycol dehydration is a frequently employed absorption process that uses a liquid 

desiccant to absorb water vapor from the gas stream. Glycol dehydration uses either diethylene 
glycol (DEG) or triethylene glycol (TEG) in contact with the wet gas stream to absorb water 
from the wet gas. After absorbing water, the glycol particles sink to the bottom of the contactor, 
where they are removed. The now-dry NG is then carried out of the dehydrator. The glycol 
solution is heated in a boiler to vaporize the water out of the solution.  

 
Solid desiccant dehydration is a frequently employed adsorption method that usually 

consists of two or more adsorption towers filled with solid desiccants, such as silica gel. Wet NG 
is passed through the towers. Water vapor in the wet NG is sequestered on the surface of the 
desiccant. Dry NG exits the tower to the NGL separation process. 

 
Separation of NGLs 

 
Removal of NGLs is generally accomplished at centralized gas-processing facilities in two 

steps. First, the NGLs must be extracted from the NG. Second, these NGLs must be fractionated 
into their base components. 

 
NGL Extraction 

 
Two techniques account for approximately 90% of all NGL removal from NG streams in 

gas-processing plants – the absorption method and the cryogenic expander process (Ghosh and 
Prelas, 2009). 

 
The absorption method of NGL extraction is very similar to using absorption for 

dehydration. The main difference is that in NGL absorption, absorbing oil is used instead of 
glycol. This absorbing oil absorbs NGLs in much the same manner as glycol absorbs water. The 
NG is passed through an absorption tower and is brought into contact with the absorption oil, 
which absorbs much of the NGLs. The “rich” absorption oil then exits the tower and is fed into 
lean oil stills, where the mixture is heated to a temperature above the boiling point of the NGLs 
but below that of the oil. This process recovers approximately 75% of butanes and 85%–90% of 
pentanes and heavier molecules. 

 
Cryogenic processes are used to extract lighter hydrocarbons such as ethane from NG. 

These processes use extreme cooling of the gas stream to condense out the lighter NGLs. An 
effective method of chilling the gas stream is the turbo expander process. In this process, 
external refrigerants are used to cool the NG stream. Then, an expansion turbine is used to 
rapidly expand the chilled gases, which causes the temperature to drop significantly (Joule–
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Thompson [JT] effect). This process can recover up to 95% of the ethane originally in the gas 
stream. 

 
NGL Fractionation 

 
NGLs removed from the NG stream must next be broken down into their base 

components to be marketable. Fractionation is used to accomplish this step. Fractionation uses 
controlled heating and the boiling points of the different hydrocarbons in the NGL stream to 
separate gas components. The fractionation process is conducted in discrete steps, starting with 
the removal of the lighter NGLs from the stream. Fractionators are used in the following order: 

 
 Deethanizer 
 Depropanizer 
 Debutanizer 
 Butane splitter or deisobutanizer – this step separates the iso- and normal butanes 

 
Sulfur and Carbon Dioxide Removal 

 
NG can contain significant amounts of sulfur and carbon dioxide, which must be removed 

prior to use of the NG as fuel. The process for removing hydrogen sulfide from NG is similar to 
the processes of glycol dehydration and NGL absorption described earlier. This process is used 
in approximately 95% of U.S. gas-processing plants. The NG is bubbled through a tower that 
contains an amine solution having an affinity for sulfur. The effluent gas is typically free of 
sulfur compounds. Like the process for NGL extraction and glycol dehydration, the amine 
solution is typically regenerated. Although most NG desulfurization involves the amine 
absorption process, it is also possible to use solid desiccants such as iron sponges to remove the 
sulfide and carbon dioxide. 

 
Straddle Extraction Plants 

 
In addition to processing done at the wellhead and at centralized processing plants, final 

polishing is sometimes accomplished at straddle extraction plants. These plants are located on 
major pipeline systems. Although the NG that arrives at these straddle extraction plants is 
already of pipeline quality, there may exist small quantities of NGLs that are extracted at the 
straddle plants. 

 
Interstate Pipeline Transport 

 
Interstate NG pipelines have gas quality requirements that vary from pipeline to pipeline 

but are established for each pipeline under its Federal Energy Regulatory Commission (FERC) 
gas tariff. Tariff terms and conditions typically limit such gas characteristics as the following: 

 
 Presence on nongaseous constituents (such as particulates, gums, and oil) 
 Heating value  
 Liquid hydrocarbon content (expressed as dew point) 
 Hydrogen sulfide, total sulfur, and mercaptan sulfur 
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 Hydrocarbon components 
 Water 
 Undesirable constituents like carbon dioxide, oxygen, nitrogen, and mercury 
 Specific gravity 
 Hydrogen 
 Helium 
 Deleterious (toxic or hazardous) substances 
 Microbial agents 
 Temperature 

 
Summary of Bakken Associated Gas 
 
Based on the information presented in the previous sections, several key points have been 

provided to summarize the current state of oil and gas development as well as the opportunities 
as hypothesized by the authors: 

 
 North Dakota is experiencing unprecedented oil and gas production from the Williston 

Basin in the western part of the state. Assuming continued strong prices for oil and 
continued completion technology evolution, the development of the Williston Basin is 
expected to continue at a rapid pace. 

 
 The primary formation targeted for production is the Bakken Formation, a tight shale 

formation requiring horizontal drilling and hydraulic fracturing stimulation to produce 
economical quantities of oil. 

 
 The Bakken Formation is an oil play but contains significant quantities of associated 

NG, which is high in NGLs. 
 
 Currently, the value of the NGLs is substantially higher than the value of the “residue” 

gas, and separation of the NGLs, if economical, makes sense and can enable the 
economic viability of other NG uses. 

 
 The combination of prolific oil production from Bakken wells, the currently high crude 

oil price, and the significant quantity of associated gas has resulted in a volume of NG 
production that exceeds the current gas-gathering and processing infrastructure. The 
excess of gas has forced producers to flare large quantities of NG at some “stranded” 
well sites. 

 
 Given that industry, regulators, and the general public wish to minimize this flaring, the 

amount of flared NG is likely to decrease significantly in the future. 
 
 The best opportunity for capturing and utilizing the flared gas in a nontraditional 

manner (i.e., a use other than delivery and processing at a NG plant) is likely to be time-
sensitive. That is, infrastructure will eventually be built out and gas will be captured. 
The opportunity to capture the gas exists after the well is put into production and before 
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gas gathering occurs. Modularity and mobility will also be vital in any feasible 
distributed opportunity. 

 
 
ALTERNATIVE APPROACH FOR SMALL-SCALE GAS PROCESSING AND NGL 
RECOVERY 
 

Background 
 

The overarching purpose of this study was to identify alternative uses of stranded rich 
associated gas that could provide an economical alternative to flaring while efforts continue to 
build gas-gathering and processing infrastructure needed to accommodate the rapid expansion of 
oil and gas production in the Bakken Formation. Emphasis was placed on uses that derived 
economic and environmental benefit while allowing a minimum amount of gas cleanup. Within 
the study, the authors recognized that to be competitive, small-scale gas utilization approaches 
would need to be mobile, moving to where stranded gas is available or competitive with 
centralized gas processing, thereby allowing the technology to remain in place even after gas-
gathering pipelines are installed. 

 
Two obvious gas uses were identified that have large NG demand and match the 

geographically distributed gas resource: transportation fuel and power. The high price of 
transportation fuel relative to NG creates some advantages; however, rich gas cannot be used in 
standard NG vehicles (NGVs) because of concerns over emissions and engine performance. In 
the case of power production, NGLs contained in the rich gas are more valuable in the chemical 
market than as a combustion fuel or associated electricity. Further, they do not necessarily 
improve engine performance. As such, small-scale NGL recovery, although less efficient than at 
large centralized facilities, may be an enabling technology, allowing value to be extracted from 
the associated gas while improving economical utilization of leaner gas for transportation and 
power. Further, at some locations, where geography and economics prevent gas gathering, even 
low-efficiency NGL recovery approaches may provide an attractive alternative with no flaring. 

 
Summary of Alternative Gas-Processing Technologies 

 
The goal of this study is not to define a specific distributed-scale gas-processing system 

but, rather, to identify opportunities to work outside the typical centralized gas plant model and 
identify conditions that could allow technical and economic feasibility. The approach taken by 
this study is to examine the broad unit functions employed in traditional gas processing, then 
identify new alternatives that may offer potential paths for further research focused on 
applicability to smaller-scale implementation. The unit functions can be broken down as follows: 

 
 Acid gas removal 
 Dehydration 
 Nitrogen rejection 
 NGL recovery 
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Acid Gas Removal 
 

In most cases, because of low content, acid gas removal is not required on Bakken 
associated gas. In general, potential acid gases to be removed from NG streams are CO2 and H2S. 
CO2 is essentially a neutral compound and, in most cases, is removed via the formation of 
carbonic acid. This is a kinetically slow process that may require catalysis. H2S is much more 
reactive and is easier to remove. Several conventional and alternative technologies can be 
applied to acid gas removal. A summary of these technologies is presented in Table 6. 
 

 
Table 15. Possible Distributed-Scale Acid Gas (SO2 and CO2) Removal Technologies 
Absorbents (solvents) 
  Physical 
  Chemical (organic, inorganic) 
  Physical/Chemical 
Adsorbents (pressure swing adsorption, online or off-line regeneration)  
  Molecular Sieves 
  MOFs 
  PURASPEC (ZnO for H2S removal) 
Membranes 
  Polymer 
  Zeolites 
 
 
Several alternate acid gas removal technologies are currently under development. Some of 

these technologies are being investigated already within the EERC’s gasification and syngas 
purification programs. Some of these technologies hold near-term promise for small-scale NG-
processing applications. 
 

New semipermeable membrane technologies enable separation of acid gases and water 
from the NG stream. However, with current technology, it is difficult to adjust the relative rates 
of diffusion of CO2 and H2S. Therefore, a distributed gas-processing system utilizing this 
technology must be designed to meet the CO2 specification. A fixed-bed adsorbent may then be 
used to remove H2S subsequently to meet the sulfur specification. 

 
Metal organic frameworks (MOFs) have been investigated by many (including DOE 

NETL, UOP, Sandia National Laboratories, U.S. Army Edgewood Chemical Biological Center 
[ECBC] and others) as highly efficient, easily regenerable acid gas absorbers (Willis, 2010; 
Peterson and Rossin, 2008). MOFs are novel crystalline compounds consisting of metal ions 
structured within organic molecules to form multidimensional porous structures. Chemisorption 
occurs because the framework has a strong affinity for the acid gases possessing high adsorption 
enthalpies. The framework chemistry is also conducive to easy release of the guest molecules 
(acid gas) when regeneration is desired. It may be possible to advance MOF state of the art to 
suit a distributed gas-processing application. 
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Liquid Desiccants 
 

Dehydration with liquid desiccants typically involves the use of a glycol solution in an 
absorber column. It can also be combined with cooling. It is the most widely applied process, 
used extensively in production operations and in many refinery and chemical plant operations. 
DEG or TEG are typically used in field gas or gas-processing plant residue gas streams. For 
chilled contacting, ethylene glycol is used. 

 
Methanol has also been employed in dehydration processes. Methanol is used either in 

direct injection or contactor absorber processes. Because methanol has a high vapor pressure, 
losses to the vapor and liquid hydrocarbon phases are considerably higher than with glycols. 
Methanol recovery methods such as IFPEXOL must be employed. 

 
Cooling Below Initial Dew Point 

 
Low-temperature separation (LTS) can be employed to dehydrate a gas stream. This 

method generally requires additional steps to prevent hydrate formation. For example, ethylene 
glycol can be used in conjunction with LTS for hydrate prevention and simultaneous dehydration 
of the gas. New rapid expansion technologies such as Twister® have also been combined with 
LTS to achieve dehydration. 
 

Solid Desiccants 
 

Dehydration of NG with solid desiccants is usually limited to those cases where complete 
water removal is desired, for example, in cryogenic plants operating in the region of −100° to 
−150°F or where a relatively small volume of gas is being processed. 

 
Molecular sieves are also being employed in the gas-processing industry for cryogenic 

plant feed-conditioning applications and some sour gas applications with special acid-resistant 
binder formulations. Dehydration of NG to a typical pipeline requirement of 7 lbwater/MMscf is 
normally least costly utilizing a liquid desiccant such as glycol, rather than using solid 
desiccants. 

 
Solid desiccants such as activated alumina and silica gel have been successfully used for 

many years in production and processing applications that require lower dew point than achieved 
by conventional glycol. With silica gel, it is possible to simultaneously remove hydrocarbons and 
water. However, with solid desiccants, regeneration becomes a significant design factor. 
Multiple-bed systems are used on gases with relatively low water content. Typically, one or more 
beds are in service drying gas and one or more beds are in regeneration mode. 

 
Deliquescent Desiccants 

 
Deliquescent systems can be economical for smaller gas volumes typical of wellhead rates 

up to 1 MMcf. Deliquescent desiccants generally comprise naturally hygroscopic alkaline-earth 
metal halide salts, e.g., calcium chloride. Water vapor is removed from NG as it flows through a 
bed of desiccant in a pressure vessel. Moisture is attracted to the deliquescent desiccant and coats 
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it with hygroscopic brine. This brine continues to attract water, forms a droplet, and then 
migrates with gravity to a liquid sump. Since the desiccants dissolve upon attracting and 
absorbing water vapor, relatively inexpensive new desiccant is simply added to the vessel when 
needed. 

 
Nitrogen Rejection 

 
Nitrogen rejection unit operations will not always be required. The necessity of this 

operation will depend heavily upon the characteristics of the gas field to which the distributed 
operation is being applied. When nitrogen rejection is required, one of two technologies is 
typically employed – cryogenic technology or selective gas-permeable membrane technology. 
Cryogenics are generally assumed to be power-intensive and, therefore, not adaptable for use at a 
distributed scale. Selectively permeable membrane technology may be scalable to this size. 

 
NGL Recovery 

 
Because of the relatively high value of products produced, NGL recovery technology 

options exist for larger and smaller gas-processing applications. The general approaches 
employed by these technology options are summarized in Table 8. In general, these approaches 
fall into one of three categories of processes: 

 
 Control of temperature and pressure to achieve condensation of NGLs 
 
 Separation of heavier NGLs from lighter gas with pressurized membrane separation 

systems 
 
 Physical/chemical adsorption/absorption 

 
 
Table 17. Possible Distributed-Scale NGL Recovery Technologies 
Turboexpander + Demethanizer 
JT Low-Temperature Separation 
Membranes 
Absorption 
  Refrigerated Lean Oil Separation (RLOS) 
Adsorption 
  Activated carbon 
  Molecular Sieve 
Twister Supersonic Gas Low-Temperature Separation Dew-Pointing Process 
 
 

Turboexpansion 
 

A commonly employed approach to NGL recovery at industrial gas-processing plants is to 
use a turboexpander in conjunction with a demethanizer. One manufacturer’s hardware is shown  
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system of $2,500,000 is based on vendor quotes and industry discussion. Operating and 
maintenance (O&M) costs were assumed to be 10% of the total capital cost, or 
$250,000 (Table10). Revenue calculations are based on NGL sales only at $1.00/gallon and a 
recovery rate of 4 gal/mcf. In this scenario, it has been assumed that residue gas is flared. 

 
 

Table 19. Summary of NGL Removal System Costs and Revenue 
 
Description 

 
Capital Cost 

Annual O&M 
Cost 

Annual 
Revenue1 

NGL Removal System, 
  300 Mcfd rich gas 

$2,500,000 $250,000 $350,400 

NGL Removal System, 
  600 Mcfd rich gas 

$2,500,000 $250,000 $700,800 

NGL Removal System, 
  1000 Mcfd rich gas 

$2,500,000 $250,000 $1,168,000 

1 Assumes 80% annual system availability and no cost for rich gas. 
 
 
Although the technical aspects of NGL removal are fairly straightforward, the business and 

contractual aspects do not share that simplicity. Several business models could be employed 
which are summarized in the following sections. 

 
Fee for Service 

 
The simplest business model for all parties involved is to provide the service of separating 

NGLs from the rich gas for a fee (most likely on a dollar-per-gallon basis). In this scenario, the 
operator pays a third party to separate the liquids, and the operator sells the liquids and either 
continues to flare the lean gas, sells it, or sends it on to gas processing via gas-gathering 
infrastructure. 

 
Monetization of Products by Third Party 

 
More complicated but still plausible would be a scenario where the entity separating the 

NGLs from the rich gas buys the rich gas, removes the NGLs, and sells the NGLs (and likely the 
lean gas as well). If the entity separating the NGLs is a third party and not the current operator, 
the contractual and financial aspects are likely quite complicated.  

 
Monetization of Products by Operator 

 
If the current operator chooses to perform the well site NGL separation, contractual and 

financial issues would likely be managed similar to existing contracts with royalty owners 
consistent with existing contractual relationships. 

 
Conclusions 

 
Although the economic viability of NGL removal systems is highly dependent on how the 

business entity is positioned in the supply chain and contractual considerations, sufficient value 



 

32 

is contained within the recovered NGL to suggest an economical business plan could be 
developed.  

 
Clearly, NGL recovery would be most economical at wells flaring larger quantities of gas 

immediately after production begins in order to capture the greatest volume of gas. Additionally, 
such a technology would benefit from being mobile and easily mobilized and commissioned 
every several months. The value achievable from trucked delivery of NGL is also a critical factor 
in determining economic viability. Businesses with their own gas-processing facilities would 
likely gain the greatest value. Those relying on third-party truck unloading may experience 
smaller profit margins. 

 
 

APPLICATION I – CNG/LNG FOR VEHICLES 
 

Introduction 
 

A possible utilization of flared gas is to purify and compress it for use in NGVs. The gas 
vented or captured at the wellhead is too rich and variable in composition to be used effectively 
in NGV engines; therefore, extensive small-scale gas processing would be required to implement 
this utilization strategy upstream of typical large-scale gas plants. CNG for vehicles is a 
commercial off-the-shelf product with original equipment manufacturer (OEM) and aftermarket 
engine options as well as fueling stations available from vendors. Provided NG is available with 
sufficient quality and quantity, CNG can provide a cost-effective and low-emission alternative to 
gasoline and diesel, and the economics are well understood. The purpose of this study was to 
evaluate adaptation of CNG upstream of the gas plant to positively impact flaring. For these 
applications to be feasible, a significant amount of small-scale gas processing will be necessary, 
including purification, compression, and dispensing of CNG fuel. Further, the vehicle fleets 
utilizing the CNG fuel would need to be adaptable and flexible in order to take advantage of 
stranded gas resource that changes in quality, quantity, and location with time.  

 
It is generally assumed that a new wellhead in North Dakota can flare gas for up to a year 

before North Dakota oil and gas regulators demand that the associated gas be captured for use at 
the well site or gathered and transported to centralized gas-processing plants. The CNG fueling 
system and accompanying fleet would need to be capable of following this transient resource or 
models would need to be adapted to enable fueling infrastructure to remain in place as gas-
gathering pipelines fill in around the CNG infrastructure.  

 
CNG and LNG Fundamentals 

 
NG has been used as an engine fuel since 1860, long before gasoline engines were 

commercialized. The first U.S. vehicles to use NG as a fuel were put on the road in the 1960s. In 
2009, the U.S. CNG vehicle fleet numbered 114,270. At the same time, the LNG vehicle fleet 
numbered 3176. Worldwide, approximately 13.2 million NGVs are in use. In the past two 
decades, the number of NGVs on U.S. roads has increased nearly 500%. Transit buses account 
for approximately 62% of all CNG motor fuel use (U.S. Energy Information Administration, 
2012a).  



 

Th
countries

 

 

 

 

 

 

 

 

 

e United Sta
s surpass the

Lack of dem
Lack of dem
 

Limited ran
volume per 
of about 200

Safety: Som
CNG indust

Lack of fill
States, but 
FuelMaker 
tanks at hom
several thou
installation 

Additional 
incremental
the largest c
Environmen
regulations. 
and kits mu

ates does not
 United Stat

mand: Many
mand has, to 

nge: CNG ta
unit energy 
0–250 miles

me U.S. con
try’s justifiab

ling stations
less than ha
sells a home

me. Howeve
usand dollar
and use. 

cost of eng
 cost of pur
components 
ntal Protectio

Conversion
st be installe

t lead the wo
tes in NGV u

y major ma
some extent

anks designe
than their ga
, half that of

nsumers expr
ble claims th

: There are 
alf of them 
e fueling sy

er, the home 
rs to purch

ine: One of
rchasing an 

of the cost
on Agency (
n kit makers
ed by certifie

33 

orld in use of
utilization. T

anufacturers 
t, prohibited

ed to operat
asoline or di
f the gasoline

ress concern
hat it is safer

more than 1
are open to
stem, called
device take

ase and ins

f the largest
OEM NGV 

t of CNG co
(EPA) and C
s must go th
ed technician

 
 

 

f NGVs. As 
The reasons f

sell CNG c
d their entran

te at 3500 p
iesel cousins
e model. 

ns about the
r than gasoli

1000 CNG 
o the public
d Phill, whic
es several ho
stall, if loca

t barriers to
 or converti
onversion is 
California A
hrough a co
ns. 

shown in Fi
frequently ci

cars elsewhe
nce into the U

psig require 
s. The Hond

e safety of C
ne. 

filling statio
. An Italian

ch compresse
ours to fill th
al building 

o wider use 
ing existing 
 compliance

Air Resource
omplex certi

igure 23, ma
ited include:

ere in the w
U.S. market.

more on-ve
a GX has a r

CNG, despit

ons in the U
n company c
es and fills N
he tank and 
codes perm

of NGVs i
vehicles. O

e with strict 
es Board (CA
ification pro

 

any 
: 

world. 
. 

ehicle 
range 

te the 

United 
called 
NGV 
costs 

mit its 

is the 
ne of 
 U.S. 
ARB) 
ocess, 



 

34 

Figure 52. NGV use by country (NVG Journal, 2012). 
Having established some of the barriers to NGV use in the United States, strong factors are 

also playing into a reinvigorated impetus to consider NGVs. Strongest among these market 
forces is the price gap between CNG and gasoline. This gap is currently at record levels because 
of supply and demand factors stemming from a wealth of new NG source discoveries in the 
United States. As a result of this increased supply, CNG prices are ranging from $1.00–$3.00 
lower than gasoline, on a GGE basis. Continued low CNG prices could further encourage more 
widespread use of CNG for fleet vehicles. 

 
CNG must be stored in tanks at pressures up to 3600 psi to offer the vehicle adequate 

driving range. Alternatively, LNG, which is 2–3 times more dense than CNG (3500 psi), can also 
be stored in vacuum-insulated pressure vessels. LNG is typically used only with heavy-duty 
vehicles, where a greater fuel quantity demand exists. 

 
LNG contains a significantly higher ratio of methane to heavier hydrocarbons. This is 

because of the processing required to liquefy the NG. As the NG is compressed and significantly 
cooled to −260°F, heavier hydrocarbons (NGLs) condense and are separated from the methane. 
This precipitation and separation occurs to a much lesser degree with CNG because CNG is not 
significantly cooled, except to compensate for the rise in temperature due to compression. 
Because LNG fuel is much closer to pure methane than most CNG fuels, LNG does not present 
the same challenges in emissions or fuel quality variation that CNG does.  

 
CNG-powered vehicles attain roughly similar fuel economy when compared to 

conventional gasoline vehicles, on a GGE or energy content basis. A GGE is a quantity of CNG 
or LNG that contains the same amount of energy (measured in Btus or joules) as a gallon of 
gasoline. One GGE is roughly 5.7 lb of CNG or roughly 1.5 gallons of LNG. 

 
CNG Feedstock Availability and Quality 

 
Gas processing of Bakken associated gas is generally accomplished at centralized gas-

processing plants in North Dakota. The residue gas produced at these gas-processing plants is 
injected into pipelines that traverse North Dakota. Table 11 presents select samples of pipeline 
gas quality data from various locations in these pipelines. 

 
The gas quality varies quite dramatically between pipeline operators and geographic 

locations. What cannot be seen in this summary is the gas quality variation over time. A 
summary of the variability in gas quality at these same pipeline stations over the 3-month period 
of October–December 2011 is presented in Table 12. 

 
Liss and Thrasher (1992) produced the most frequently referenced survey of variation 

(both temporal and geographic) in natural gas composition in the United States. This survey 
documented wide variations in NG quality across the United States. A brief summary of this 
extensive data set is captured in Table 13. This study also concluded that gas quality variations 
over time across the nation are highly variable. 
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Table 20. Select Gas Quality Data from North Dakota Pipeline Stations, 4th Quarter 20113  
 

WBIP1 
Williston–

Ray 

WBIP N. 
Tioga 

Transfer–
Ray 

WBIP 
Baker–
Little 

Beaver 

WBIP 
Dickinson–
Glen Ullin 

WBIP 
Bismarck–
Glen Ullin 

NBIP2 
Guardian

NBPC 
Glen 
Ullin 

C1, mol% 69.25 71.29 91.92 82.98 82.98 95.44 95.49 
C2, mol% 23.06 21.15 3.10 12.07 12.13 2.14 1.95 
C3, mol% 3.13 3.29 0.46 1.00 1.00 0.21 0.14 
C4+, mol% 0.30 0.29 0.09 0.07 0.08 0.03 0.01 
CO2 + N2, mol% 4.27 3.98 4.43 3.88 3.81 1.97 2.21 
H2S, mol% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Wobbe Index, 
  Btu/scf 

1414 1411 1298 1353 1355 1331 1324 

MN 62.0 63.2 96.9 78.4 78.3 101.2 102.2 
1 Williston Basin Interstate Pipeline. 
2 Northern Border Interstate Pipeline. 
3 Sources: transmission.wbienergy.com and www.northernborder.com. 

 
 

Table 21. 3-month Variability in Gas Quality Data at North Dakota Pipeline Stations,  
4th Quarter 20111  
   

WBIP 
Williston–

Ray 

WBIP  
N. Tioga 
Transfer–

Ray 

 
WBIP 

Baker–Little 
Beaver 

 
WBIP 

Dickinson–
Glen Ullin 

 
WBIP 

Bismarck–
Glen Ullin 

 
 

NBPC Glen 
Ullin 

 
 

NBPC 
Guardian 

Calculated Dry 
  Gross Btu/ft³ 

1193–1237 1186–1620 971–1144 1011–1179 1006–1176 1003–1019 1006–1019 

C1, mol% 67.85–72.51 34.08–73.85 51.14–95.41 73.74–95.98 71.46–91.21 94.12–95.79 95.04–96.11 
C2, mol% 19.44–23.31 10.05–22.24 0.30–23.67 1.93–23.03 4.20–21.58 1.62–2.97 1.58–2.48 
C3, mol% 3.01–4.96 3.11–33.28 0.03–6.98 0.14–1.56 0.21–2.70 0.11–0.33 0.10–0.29 
i-C4, mol% 0.08–0.26 0.04–0.25 0–0.21 0–0.05 0.01–0.09 0–0.03 0–0.03 
n-C4, mol% 0.15–0.63 0.07–0.55 0–0.55 0–0.11 0.01–0.20 0–0.03 0–0.03 
i-C5, mol% 0.01–0.05 0–0.05 0–0.01 0 0–0.02 0–0.01 0–0.01 
n-C5, mol% 0.01–0.06 0–0.05 0–0.03 0 0–0.02 0 0 
C6+, mol% 0–0.02 0–0.02 0–0.01 0 0–0.03 0 0–0.01 
CO2 + N2, mol% 3.4–5.3 2.53–4.67 3.92–17.40 1.93–4.28 3.0–4.86 2.04–2.40 1.76–2.16 
1 Sources: transmission.wbienergy.com and www.northernborder.com. 

 
 

Table 22. Select National Statistics for NG in 26 Major Urban Areas of the United States (Liss 
and Thrasher, 1992) 

 National Mean 

National 
Minimum with 

PA1 

National 
Minimum 

Without PA 
10th Percentile 

Nationwide 
90th Percentile 

Nationwide 
C1, mol% 93.9 55.8–98.1 74.5–98.1 89.6 96.5 
C2, mol% 3.2 0.5–13.3 0.5–13.3 1.5 4.8 
C3, mol% 0.7 0.0–23.7 0.0–2.6 0.2 1.2 
C4+, mol% 0.4 0.0–2.1 0.0–2.1 0.1 0.6 
CO2 + N2, mol% 2.6 0.0–15.1 0.0–10.0 1.0 4.3 
Wobbe Index, Btu/scf 1336 1201–1418 1201–1418 1331 1357 
MN 90.0 34.1–96.2 73.1–96.2 84.9 93.5 
1 PA refers to propane–air peak shaving during peak demand periods.
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Existing CNG Fuel Quality Standards 

 
In general, pipeline gas quality standards do not match fuel specifications set forth by 

either engine manufacturers or regulatory bodies such as CARB. In fact, there is no nationwide 
pipeline gas specification. CARB is the only U.S. regulatory entity that has established a 
commercial fuel quality specification for NG. 

 
The lack of clear and reasonable gas quality standards is, by many accounts, impeding the 

proliferation of CNG and NGVs. Engine manufacturers have greatly improved engine designs in 
the past decade to accommodate a wider range of fuel compositions, but without a nationwide 
pipeline standard and without a robust CNG market, CNG suppliers have been unable to 
consistently deliver the fuel quality required to support a developing CNG market. 

 
Anecdotally, other fuels markets have had to wrestle with the problem of chasms between 

manufacturer fuel specifications and available fuels. This has happened largely behind the scenes 
in the world of gasoline and diesel engines. There has always been a tension between the OEMs 
and the fuel providers. The OEM’s ideal is to have a very tight fuel specification to preclude 
effects of variable fuel composition on their engines. The fuel suppliers cannot generally provide 
that high level of quality without charging an objectionable premium cost. In the case of mature 
gasoline and diesel markets, this balance of power results in the two factions agreeing to a 
compromise. 

 
In the case of CNG, there is not yet a host of major fuel suppliers in the market to push 

back against the demands of the OEMs. This leads to an unbalanced approach to fuel 
specifications. The authors of this report spoke with these OEMs and upfitters, including 
Cummins Westport, Westport HD, Landi Renzo, and BAF. These companies told the authors 
that strict fuel specifications are required for engine warranty purposes because CNG fuels have 
the potential to vary so greatly. It is the OEM’s position that no engine design could adequately 
accommodate such widely ranging fuel compositions without inducing damage to the engine or 
accelerating the replacement schedule of various consumables. 

 
Following is a summary of the major relevant CNG fuel specifications in use in the United 

States today. 
 

40 Code of Federal Regulations (CFR) 79.55 Base Fuel Specifications (EPA) 
 

EPA prescribes a set of base fuel specifications for each major type of fuel used in 
transportation in the United States. This base fuel specification is not meant to declare a required 
specification for fuel sold but, rather, sets a standard fuel upon which tailpipe emissions should 
be measured. Methane base fuel is defined as a gaseous motor vehicle fuel marketed 
commercially as CNG, whose primary constituent is methane. According to CFR 79.55, methane 
base fuel must meet the specifications listed in Table 14. 
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Table 23. Methane Base Fuel Specification, 40 CFR 79.55 
Component Value 
Methane, mol%, min. 89.0 
Ethane, mol%, max. 4.5 
Propane and Higher HC, mol%, max. 2.3 
C6 and Higher HC, mol%, max. 0.2 
Oxygen, mol%, max. 0.6 
Sulfur (including odorant additive) ppmv, max. 16 
Sum of CO2 and N2, mol%, max. 4.0 

 
 

Society of Automotive Engineers (SAE) J1616 – Recommended Practice for CNG 
Vehicle Fuel 

 
SAE has published a recommended CNG specification, summarized in Table 15, which 

presents important physical and chemical characteristics of CNG vehicle fuel and describes test 
methods for evaluating these characteristics. It does not, however, take the CARB approach to 
fuel specification by hydrocarbon species. Instead, it leans heavily on the Wobbe index as a 
measure of fuel quality and provides recommendations on nonfuel contaminant content. 

 
 
Table 24. SAE J1616 CNG Specifications 
Component Value 
Water Content Note1 

CO2 3.0%, max. 
S and Sulfur Compounds 8–30 ppm, max. 
O2 Note 2 

Particulate Matter Minimized 
Pressure Hydrocarbon Dewpoint Temperature Note 3 

Wobbe Index 48.5–52.9 MJ/m³ 
1 The local dew point temperature of the fuel should be defined as 5.6°C below the 
 monthly lowest dry-bulb temperature at the maximum operating cylinder pressure.  
2 The oxygen level must not produce a mixture within the flammability limits of NG. 
3 The composition of NG should be such that the original gaseous storage volume 
 will form less than 1% of a liquid condensate at the lowest ambient temperatures 
 and gas storage pressure between 5.5 and 8.3 MPa at which maximum condensation 
 occurs, depending on gas composition.

 
 

California Specifications for CNG (California Code of Regulations, 2012) 
 

The CARB CNG fuel specification takes a conservative approach and prescribes fuel 
content by hydrocarbon species as well as by maximum levels of nonfuel contaminants. It does 
not address fuel heating value directly but, rather, prescribes a fuel mixture that could be used to 
derive a methane number or Wobbe index. 
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CNG cannot be sold or supplied in California unless it meets the specifications in the 
Table 16. Industry sources indicate that the commercially available CNG fuel in California may 
not meet the California specification, and the issue may have to be reviewed in the future (U.S. 
Energy Information Administration, 2012a). In fact, since 2010, CARB has been considering a 
major redefinition of these CNG specifications to instead rely almost solely on methane number 
as the key specification. This change is being advocated by major CNG engine manufacturers 
and their trade associations. 

 
 
Table 25. CARB Specifications for CNG 

Component Value, mol%, unless otherwise noted 
Methane 88.0%, min. 
Ethane 6.0%, max. 
C3 and Higher HC 3.0%, max. 
C6 and Higher HC 0.2%, max. 
Hydrogen 0.1%, max. 
Carbon Monoxide 0.1%, max. 
Oxygen 1.0%, max. 
Sum of CO2 and N2 1.5–4.5%, range 
Water 1

Particulate Matter 2

Odorant 3

Sulfur 16 ppm by vol., max. 
ª The dew point at vehicle fuel storage container pressure must be at least 
 10°F below the 99.0% winter design temperature listed in Chapter 24, 
 Table 1, Climatic Conditions for the United States, in the American 
 Society of Heating, Refrigerating and Air Conditioning Engineers 
 (ASHRAE) Handbook, 1989 fundamentals volume. 
b The CNG must not contain dust, sand, dirt, gums, oils, or other  
 substances in an amount sufficient to be injurious to the fueling 
 station equipment or the vehicle being fueled. 
c The NG at ambient conditions must have a distinctive odor potent 
 enough for its presence to be detected down to a concentration in air of 
 not over 1/5 (one-fifth) of the lower limit of flammability.

 
 

Recent Movement Toward NGVs 
 

Corporate Push for NGV Fleet Conversion 
 

A small but significant number of American corporate entities have committed to 
converting substantial portions of vehicle fleets to CNG and LNG. The reasons for this push vary 
by case, but in general can be attributed to corporate “green” strategy, fuel cost savings, 
government incentives, and regulatory pressure in certain states. A small sampling of recent and 
ongoing fleet conversions to CNG and LNG is presented in Table 17. This list is not 
comprehensive but, rather, is intended to convey that many major U.S. corporations are acting on 
motivations to adopt NGV technology into their fleets and business strategies. 
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A Distributed Model Suitable for Small-Scale Bakken Associated Gas 
Opportunities 

 
Opportunities to use wellhead gas to produce CNG fuel in the Bakken development may 

be plentiful because of the rapid and prolonged pace of development, but each opportunity exists 
for only a limited time. In general, a maximum of 1 year passes between the time a new well is 
completed and the time at which gas-gathering pipeline is brought to the first well on the new 
location. During this time, associated gas is typically flared. After this time, the assumption is 
that it would be difficult to compete with the economics of gathering and centralized gas 
processing, especially given that “pipeline quality” does not always equate to CNG quality. 
Additional polishing is often required to convert pipeline gas to CNG gas, given the wide 
variations in pipeline gas composition. 

 
Prior to injection into pipelines, Bakken associated gas is treated in centralized gas-

processing facilities connected to wellheads by vast networks of gathering pipelines. 
Accomplishing the same (or higher) level of gas processing at the wellhead would require 
1) miniaturization of gas purification technologies, 2) great reduction in price of each 
purification function for the smaller scale, and 3) mobile purification/compression/dispensing 
systems capable of being quickly set up at one location then mobilized and moved to new 
locations on a regular basis and at intervals of less than 1 year. 

 
A natural economy of scale exists at larger, centralized gas-processing plants. Desiccant 

towers, desulfurizer units, NGL extraction, and fractionation towers are traditionally made most 
economical when they are built to process large amounts of gas. The inherent nature of scale 
works against cost-effective size reduction. It is, indeed, a challenge to miniaturize these systems 
for the purpose of achieving the same level of processing at the wellhead. There are, however, 
enabling techniques to be investigated to work around this phenomenon of scale. 
 

NGL Removal and Storage 
 
The removal of NGLs from the rich gas greatly increases the economic feasibility of a 

CNG project and reduces the loss of resource when flaring is necessary. Based on modeling done 
as part of this study, the EERC concluded that removing the NGLs (specifically butane and 
heavier constituents and a portion of propane) can be accomplished with chilling and JT cooling 
operated at −20°F and 200–1000 psi. Once the NGLs have been separated and stabilized, they 
are pumped to on-site storage tanks.  

 
At an estimated NGL removal rate of 4 gallons/Mcf (from 1000 Mcf/day of rich gas) the 

daily production of NGLs would be approximately 4000 gallons of NGLs per day. Based on this 
NGL production number and a desire to have 2 weeks worth of storage capacity, the required 
storage capacity would be approximately 56,000 gallons (1300 bbl). NGLs would need to be 
stored on-site at a minimum pressure of 200 psi to maintain NGLs in the liquid phase. 

 
Based upon discussions with industry representatives, the capital cost for the NGL removal 

and storage system is estimated to be $2,500,000. This capital cost includes the necessary 
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Key NREL Report Conclusions 
 

In summary, the NREL report concluded the following: 
 

 Decisions made on equipment purchases, capital upgrades, and fuel contracts have 
long-term impacts on the operational success of the fleet. 

 
 Larger transit and refuse fleets (75+ vehicles) tend to be profitable and resilient to 

variations in project parameters. 
 

 School fleets and small transit/refuse fleets tend to be marginal. 
 
 Diesel prices are a powerful indicator of profitability given that NG prices are relatively 

consistent. A school bus project appears to only make economic sense once diesel 
prices approach $4/gallon for 100-bus fleets and $5/gallon for 50-bus fleets. 

 
 Project success is very sensitive to vehicle maintenance costs. 
 
 Tax issues have a strong influence on profitability. 
 
 The cost of the station has a significant influence on the profitability of marginal 

projects. 
 
 Factors that do not have much effect on project profitability over the range tested are:  

 Efficiency difference between CNG and diesel engines (−25% to +10%). 
 Change in vehicle/project life (10 years to 20 years). 
 Electricity prices (50% and 150% baseline). 
 Maintenance costs for the CNG station (50% and 150% baseline). 
 Garage upgrade (for minimal-upgrade scenario). 
 Number of new attendants/hostlers (fewer than two to more than four personnel).  

 
A Model for Use of Bakken Gas in NGVs 

 
Many of the cost factors that must be analyzed to produce a valid economic assessment of 

the Bakken region’s CNG/LNG opportunities are well understood. However, this study lacks 
sufficient data to determine costs associated with a foundational component of a valid economic 
assessment – costs related to the technology required to purify the rich, wet associated gas into 
engine manufacturer-approved CNG/LNG fuel. Few, if any, microscale distributed systems exist 
that are capable of separating NGLs, sulfur, and water from the rich Bakken associated gas 
economically to polish the resource to CNG-quality fuel. None were identified by this study. 
That is not to say that larger systems could not be adapted, but to date, this has not been a market 
opportunity, so no commercially available systems exist. 
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Liquefaction of natural gas to produce LNG fuel is even more challenging in terms of cost, 
especially at the small scales being investigated within the context of this study. After a brief 
examination, LNG did not surface as an area of emphasis. Reasons for not including LNG as an 
area of emphasis for this study included: 

 
1. Significantly increased capital costs of liquefaction equipment over CNG equipment. 

 
2. Difficulties in miniaturizing and mobilizing liquefaction systems for use at the wellhead. 

 
3. Additional precompression removal of natural gas liquids required to provide suitable 

feedstocks to liquefaction process. 
 
One of the objectives of the study was to determine a palette of potentially viable 

technologies that could be scaled down to address distributed-scale gas purification for CNG 
production. The technologies outlined in a previous report section are all candidates for this 
scaling effort. The cost analysis for fuel preparation costs will, therefore, only outline a boundary 
condition for costs that create an economically feasible scenario. 

 
Scale of Potential CNG Consumption Relative to Bakken Associated Gas 

 
A fleet traveling 1 million miles annually would consume approximately 

15,000 Mcf/year, or 23,000 scf of CNG per day (assuming 15 miles/GGE). Comparing this 
against the gas production rates shown in Table 3, it is evident that even large NGV fleets would 
not consume significant quantities of Bakken associated gas relative to the amount of gas 
available. The CNG economic assessment will necessarily start from an assumed, reasonably 
sized fleets, and project where the economic breakeven point will be, given a set of assumptions. 
It will then present sensitivity analyses based on various fleet gas usage factors. 
 

Fuel Preparation Costs 
 

Perhaps the largest unknown in this economic analysis is the cost of fuel purification and 
preparation for compression and dispensing operations. Because the North Dakota Bakken 
Formation associated gas is a rich gas, commercial, off-the-shelf, distributed-scale technology is 
not readily available. Costs were estimated based upon EERC experience in gas-processing 
technologies from other technology sectors. $2.5 million was assumed for a small-scale gas-
processing system that can be made mobile to work at sites of opportunity in the Bakken region. 
This cost would naturally decrease as additional units are manufactured, but development costs 
would necessarily need to be captured in the first sale. 

 
A by-product of fuel purification is the NGL stream produced. This NGL stream has value 

and must be factored into the CNG economic analysis. Throughout the various applications 
discussed in this report, the authors use the assumptions listed in Table 20 to represent revenue 
generated from an NGL removal system and subsequent sale of NGLs. This represents additional 
revenue in the CNG economic model. 
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Table 29. Assumed NGL Revenues Associated with CNG  
Production 
 
Product 

 
Quantity 

Assumed 
Value 

Daily 
Revenue 

Annual 
Revenue1 

NGLs 2400 gpd $1.00/gal $2400 $700,800 
1 Assumes 80% annual system availability.

 
 

For the purposes of this study, the cost of associated gas has been set at zero. The actual 
cost of this resource will be highly dependent upon the business arrangement. 
 

Station Costs 
 

This report assumes, based upon findings in the NREL report (Johnson, 2010), that high 
throughput, rapid fueling stations will serve the most economically feasible vehicle fleet 
scenario – that of a high-mileage fleet with significant fuel consumption. This assumption drives 
a baseline including a fast-fill station capable of significant fueling throughput and rapid 
turnaround of vehicles upon fueling.  

 
This fueling station must also be mobile to move to where uncaptured associated gas 

exists. Even if it is assumed that the gas converted to CNG can be obtained from gathering lines 
(thus alleviating the requirement to move as frequently as would be necessitated by stationing at 
wellheads that are eventually connected to gas-gathering systems within a year), it could be 
argued that the station would need to remain mobile to serve the moving fleets of vehicles 
following the expansion of the Bakken play. This would apply equally to field service vehicles, 
transit buses, and personal vehicles. Given this set of assumptions, a fueling station configuration 
can be defined. The mobile CNG fueling trailer offered by IMW Industries serves as an effective 
example. IMW Industries has provided the costing information in Table 21 (Damiani, 2012). 

 
 

Table 30. Estimated Mobile Refueling Station Costs (Damiani, 2012) 
Mobile Fueling Station Cost Component Lease Purchase 
Refueling Trailer $13,000 per month $500,000
Siting Costs $10,000 per site 
Electrical Costs1  $0.10/GGE2 
Maintenance Costs 5% of equipment costs per annum
1 North Dakota low electrical rates considered. 
2 Ybarra, 2007. 

 
 
Thus IMW Industries and the EERC estimate that in a lease situation, a project would 

expend approximately $15,000 per month to lease, site, operate, and maintain the IMW mobile 
fueling station, assuming one site a year and a fleet refueling with 72,000 GGE (developed in 
Table 22). Over a 10-year project lifespan, a lease would cost approximately $1.8 million. A 
purchase situation would alternately cost approximately $750,000 (not including financing 
costs), using the same assumptions. Given the anticipated long-term refueling needs, the 
remainder of the economic evaluation was performed based on the purchase of a refueling 
system. 
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Table 31. Yearly Costs vs. Fuel Savings 
Yearly Financing Payments $908,325
Additional Yearly Fueling Trailer-Siting Costs $10,000
Yearly Fueling Trailer Maintenance Costs $50,000
Yearly Electricity Costs $7,200
Yearly Gas Resource Payments $0
Less Yearly Revenue from NGL Recovery and Sale (Table 20) ($700,800)
Net Yearly Costs $274,725
Yearly Cost Savings in Fuel, assuming comparable fuel mileage 
  Number of Vehicles 60
  Vehicle Miles Traveled (VMT) per Vehicle 18,000
  VMT Total 1,080,000
  Mileage, miles/GGE 15
  GGE Consumed 72,000
  Gasoline Cost, $/gal $3.70
  CNG Cost, $/GGE $2.45*
  Net Cost Savings on an Energy Basis, $/GGE $1.25
Net Yearly Cost Savings for Total Fleet VMT $90,000
* $2.45 CNG price is a high quote of national pump price samples from www.cngprices.com on  
    April 19, 2012. 

 
 

Vehicle Costs 
 

For the sake of this model, it is assumed that the fleet of vehicles would consist of  
60 converted Ford F-250 pickups used as field service vehicles. The costs for these conversions 
are readily available from each manufacturer. As an example, BAF Technologies provides this 
conversion package at a cost of $12,800/vehicle. This includes upfit costs for a bifuel CNG–
gasoline engine or a dedicated CNG engine plus transportation to a local Ford dealer. It does not 
include state and local taxes on vehicle purchases. For 60 conversions, vehicle costs would 
amount to $768,000. 
 

O&M Costs 
 

NGVs are often assumed to have lower maintenance costs compared to diesel and gasoline 
engine vehicles. NG burns cleaner (fewer carbonaceous deposits), so its combustion results in 
less wear on mechanical components of the engine and extends the time between tuneups and oil 
changes. Anecdotally, some fleet operators have reduced maintenance costs by as much as 40% 
by converting their vehicles to CNG. Oil changes are recommended every 10,000–25,000 miles, 
depending upon the vehicle make and how the vehicle is used. This is compared to every 3000–
5000 miles for the gasoline engine. 
 

Despite this anecdotal indication, little evidence is found in the literature to support this 
assumption. In fact, Watt (2012) and World Bank (2001) state that maintenance may actually be 
more expensive, compared to diesel maintenance, for the following reasons: 
 

 NGV parts are generally more expensive because of lower volumes. 
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 NGV engine users have reported reduced reliability of NGV engines, although it should 
be noted that this may be a function of engine vintage. Manufacturers are sure to state 
that 1990s engines were in the early stage of their product development cycle and will 
continue to improve. 

 
Therefore, this study will assume that maintenance costs do not vary significantly from gasoline 
or diesel engines in similar use situations. This approach is validated by the approach taken 
independently in the NREL report discussed previously (Johnson, 2010).  
 

Fuel Price 
 

The value of stranded associated gas is difficult to assess. The focus of this report was to 
identify economical utilization of fuel resources that are otherwise being flared (unmonetized). 
The report scope was expanded to include not only wellhead associated gas that is currently 
flared, but also gathered associated gas, if there is potential to use that gas locally and in an 
economically efficient manner.  

 
This report takes the tack of proposing a reasonable bounding fuel cost for the model (top-

down, in many respects). This fuel price must be a value that is supported by market demand, is 
comparable to prices regionally and nationwide, and does not artificially push the economic 
analysis out of bounds. 

 
A fuel price of $2.45/GGE represents a reasonable marker for the following reasons: 
 
 Although higher prices are reported at fueling stations elsewhere in the nation, this 

value still allows for a cost premium that can be applied toward higher gas-processing 
costs assumed to be relevant to smaller, distributed fuel processing. 

 
 Although lower prices are reported at fueling stations elsewhere, this value still reflects 

the fact that no distribution costs are incurred. 
 
 Although this price is higher than reported at fueling stations elsewhere, this price point 

potentially still represents a large fuel cost savings for medium-sized fleets. 
 

Taxes and Incentives 
 

A myriad of state incentives for NGVs exists, but they vary greatly by state. Currently, 
there are no North Dakota State incentives for NGVs or NG fueling stations.  

 
The Energy Policy Act of 2005 (§1341, Publication L, No. 109-58) provided income tax 

credit when NGVs were purchased. However, this tax credit was allowed to expire in December 
2010. Similarly, a fuel excise tax credit to sellers of CNG or LNG fuel expired in 2009, although 
the credit was then extended until August 2011 as part of the Tax Relief, Unemployment 
Insurance Reauthorization, and Job Creation Act of 2010 (PL 111-312). No federal incentives for 
NGVs or NG fueling stations currently exist. Finally, income tax credits for installation of NGV 
fueling infrastructure expired in December 2010 and were extended for 1 year as part of the Tax 
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Relief, Unemployment Insurance Reauthorization, and Job Creation Act of 2010 (PL 111-312). 
No federal incentives currently exist to promote NGV purchase and use, but in January of 2012, 
President Barack Obama renewed a conceptual push for increased use of NGVs, sketching out 
plans for additional federal tax credits and other incentives (Sanati, 2012). Details of this plan 
were developing at the time of this report. 

 
Fuel taxes are examined as follows and summarized in Table 23 only to verify that they are 

not excessive to the point that they necessarily inflate the previously described assumed fuel 
cost. A fuel cost of $2.45/GGE less $0.413/GGE leaves $2.037/GGE for nontax fuel costs, 
including O&M of the fueling station, siting costs, amortization costs, and fuel-processing costs. 
This is still a moderate price point when compared with other tax-inclusive price points across 
the nation and is thus deemed a conservative but reasonable price point. 

 
 

Table 32. Taxes on CNG in North Dakota 
 
Tax Component 

Addition to 
Fuel Price 

Federal CNG Excise Tax (reference IRS Form 720) $0.183/GGE 
North Dakota State Sales Tax on CNG Exempt 
North Dakota Special Fuels Excise Tax $0.23/GGE 
Total Tax Add to CNG $0.413/GGE 

 
 

Costs of Financing 
 

Using cost estimates described previously, a simple bounding analysis can be completed to 
determine a net annual fuel cost savings that is required to economically justify implementation 
of CNG fleet conversion, including installation of support infrastructure. There are many 
sensitivity studies that could be performed, but only basic data with many cost assumptions are 
provided here. Insurance and permitting costs are not included because of the difficulty in 
obtaining estimates on such an insufficiently defined, hypothetical case. These costs would likely 
be small relative to other implementation costs. 

 
The analysis first approximates the up-front implementation costs anticipated for such a 

project. The up-front costs are summarized in Table 24. This analysis shows that approximately 
$6.8 million must be rolled up into the first-year expenses of a fleet conversion project. These 
costs also represent additional costs that would not be incurred without the conversion project.  

 
 
Table 33. Up-Front CNG Fleet Implementation Costs 
Upfront Cost Component Cost, US$ 
Mobile Refueling Trailer Purchase (two trailers) $1,000,000 
First Year Siting Costs (four sites) $40,000 
Vehicle Upfit Cost (60 vehicles) $768,000 
Gas Processing Unit (two units) $5,000,000 
Total Up-Front Implementation Costs $6,808,000 
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Next, a simple look at amortization costs is summarized in Table 25, assuming a 6% 
interest rate. No time value of money is accounted for in this simple analysis. This calculation 
shows that $6.8 million in up-front costs could be financed for approximately $2.3 million in 
interest, totaling approximately $9.1 million in principal and interest. 

 
 

Table 34. Amortization Costs 
Equipment and First-Year Costs $6,808,000 
Finance Processing Costs $10,000 
Total Amount Financed $6,818,000 
Interest Rate 6% 
Finance Period 10 years 
Estimated Monthly Payment $75,693.78 
Total Interest Paid $2,265,253 
Total Principal + Interest $9,083,253 

 
 

These values provide input for the real goal of this analysis, which is to illustrate the yearly 
savings in fuel costs required to justify the CNG conversion project on strictly economic value. 
The amortization summarized in Table 25 results in a $75,893 monthly payment toward principal 
and interest. Over the course of a year, this amounts to $910,723 in payments. An estimate of 
financing costs is included in Table 22 along with costs incurred during subsequent years of the 
project to arrive at a net yearly project cost. This is then compared against the yearly savings 
from reduced fuel prices. 

 
It is apparent from the calculations summarized in Table 22 that a 60-vehicle fleet will not 

pay for itself in fuel savings alone, even if rich gas resource purchase costs are ignored. Other 
noneconomic factors would have to be included to justify this conversion project. If the analysis 
is pursued further to investigate sensitivities to the primary input parameters of vehicles, VMT, 
mileage, and relative fuel costs, the situations summarized in Table 26 can provide the economic 
justification required. In this table, inputs are found in bold cells, calculations in nonbold cells. 
The variables changed from the baseline presented in Table 22 to drive the net cost savings for 
total fleet VMT to be equal to net yearly costs presented in Table 22 are highlighted in bold italic 
text in Table 26. This sensitivity analysis shows that a significantly larger fleet than that 
presented in the baseline case in Table 22 needs to be considered to make such a project 
economically feasible. 

 
 
Table 35. Other Economic Scenarios that Make Fuel Savings Equal to Net Yearly Costs 
Number of Vehicles 164 120 120 120 
VMT per Vehicle 18,000 24,600 18,000 18,000 
Total VMT 2,952,000 2,952,000 2,160,000 2,160,000 
Mileage, miles/GGE 15 15 10.98 15 
GGE Consumed 196,800 196,800 196,721 144,000 
Gasoline Cost, $/gal $3.70 $3.70 $3.70 $3.71 
CNG Cost, $/GGE $2.45 $2.45 $2.45 $2.00 
Net Cost Savings on an Energy Basis, $/GGE $1.25 $1.25 $1.25 $1.71 
Net Cost Savings for Total Fleet VMT $246,000 $246,000 $245,902 $246,240 
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A large driver in this simple model (and a large unknown) is the cost of the gas-processing 
unit. With no commercial off-the-shelf packages available for this type of rich gas processing to 
CNG-quality fuel gas, a reasonable estimate of $2.5 million was used. If this analysis is 
completed with a $500,000 price for the gas-processing unit instead, the numbers change 
dramatically. Total up-front implementation costs become $2,808,000. Total principal and 
interest become $3,754,269, including $936,269 of interest. Net yearly costs instead become net 
yearly revenue if NGL sales are accounted for (again, ignoring rich gas resource purchase costs). 
The net yearly revenue becomes $258,173. Thus it can be determined that: 

 
 The CNG purification system cost will be a major driver of the economic justification 

for CNG use. 
 
 The business agreement to purchase the rich gas resource will, of course, be critical to 

the economic justification. 
 

Evaluation Summary 
 

While there may be several other drivers to warrant the use of CNG in the Bakken region, 
economics alone will most likely not justify conversion of medium-sized fleets of vehicles to 
CNG if a distributed CNG refueling approach is taken. The economics of small-scale, distributed 
gas processing seem to be the major driver pushing costs per VMT to high levels. Several other 
studies in the literature have concluded that economic justifications can be made for CNG if 
stationary fueling systems are used in conjunction with large fleets of vehicles. The economies of 
scale involved in centralized processing and gas distribution are difficult to improve upon. 

 
If noneconomic justifications for CNG fleet conversion can be made on a case-by-case 

basis, technology exists that could be adapted to suit the needs of any particular refueling 
scenario. This study, however, reveals that some additional gas processing would likely be 
necessary even if the gas resource is obtained from existing pipeline infrastructure in North 
Dakota. A few exceptions exist, depending upon the location of the draw from the pipeline and 
the pipeline from which the gas is drawn. However, much of the pipeline gas in North Dakota 
does not meet minimum specifications for NGV use. 
 
 
APPLICATION II – ELECTRIC POWER GENERATION 
 

Background 
 

Current Electrical Generation 
 

North Dakota possesses many abundant energy resources—coal, oil, natural gas, wind, 
hydroelectric, and biomass. Of these, the electrical generation profile of North Dakota currently 
comprises three primary sources: coal, wind, and hydroelectric; in 2010, these represented 64%, 
25%, and 9%, respectively, based on nameplate capacity (U.S. Energy Information 
Administration, 2011). Because of sparse population and low in-state electrical consumption, 
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between 60% and 70% of the electricity generated in North Dakota is exported. Table 27 
provides a comparison of North Dakota’s electrical generation to its neighboring states.  
 
 

Table 36. Nameplate Electrical Generation Capacity as a Percentage of Total for 
North Dakota and Neighboring States (U.S. Energy Information Administration, 
2011) 
 North Dakota, % Montana, % South Dakota, % Minnesota, % 
Coal 64 44 13 32 
Hydroelectric 25 43 42 1 
Wind 9 6 17 12 
NG <1 5 21 35 
Petroleum 1 1 8 6 
Nuclear 0 0 0 11 

 
 

As discussed in the Oil and Gas Production Section, the rapid development of the Bakken 
Formation in the Williston Basin for oil has produced an excess of NG which currently exceeds 
the processing capacity in the area. Flaring the excess NG has become an issue until collection 
infrastructure and processing capacity are built out. For the purposes of this study, this 
“stranded” gas is being called nontraditional NG, a term that is intended to describe all NG that 
is upstream of the gas-processing facility. 
 

When evaluating the use of nontraditional NG as a fuel for distributed power generation, 
the following considerations are foremost: 

 
 Scale (0.5 to 10 MW) 
 Fuel flexibility (rich gas with minimal processing) 
 Maturity (commercially available product) 
 Economic feasibility 
 
NG Resource  

 
The nontraditional NG resource of the Williston Basin is located in northwestern North 

Dakota, west of large coal-based electrical generation. Figure 30 shows the flared NG in relation 
to existing coal-fired generation as well as electrical transmission infrastructure. Figure 31 shows 
the same flared NG in relation to electrical distribution cooperative service territory. 
 

Power Demand/Market 
 

The demand for power in the Williston Basin since the onset of the current oil “boom” has 
grown rapidly. Two electric utilities serve the Williston Basin area: Montana–Dakota Utilities 
Co. (MDU) generates electricity for the major municipalities and Basin Electric Power 
Cooperative (BEPC) provides power, through its member cooperatives, for the rural areas. Based 
on information provided by MDU and BEPC, electricity consumption is increasing significantly.  
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Applicable Technologies 
 

In 2003, NREL and Gas Research Institute (GRI) prepared a very thorough technical report 
summarizing the gas-fired technologies suitable for distributed electrical generation (Goldstein et 
al., 2003). A review of that document verifies that several platforms are suitable for distributed 
power generation using some form of gas. The technologies discussed in the NREL–GRI report 
are summarized in Table 29. 
 
 

Table 38. Summary of Technologies Analyzed in the NREL–GRI Report 
 Reciprocating 

Engine 
 

Gas Turbine 
Steam 

Turbine 
 

Microturbine 
 

Fuel Cell 
Technology Maturity Mature Mature Mature Immature Immature 
Size – Single Unit, MW 0.01–5 0.5–50 0.05–50 0.03–0.25 0.005–2 
Electric Efficiency, HHV1 30%–37% 22%–37% 5%–15% 23%–26% 30%–46% 
Total CHP2 Efficiency, 
  HHV 

69%–78% 65%–72% 80% 61%–67% 65%–72% 

Power-Only Installed 
  Cost, $/kW 

700–1000 600–1400 300–900 1500–2300 2800–4700 

CHP Installed Cost, 
  $/kW 

900–1400 700–1900 300–900 1700–2600 3200–5500 

O&M Cost, $/kWh 0.008–0.018 0.004–0.01 <0.004 0.013–0.02 0.02–0.04 
Availability >96% >98% Near 100% 95% 90% 
Equipment Life, years 20 20 >25 10 10 
Fuel Pressure, psi 1–65 100–500 NA 55–90 0.5–45 
NOx Emissions, lb/MWh 0.2–6.0 0.8–2.4  0.5–1.25 <0.1 
1 Higher heating value. 
2 Combined heat and power. 

 
 

An initial review of the characteristics of each technology (presented in Table 30) 
eliminated some options from further discussion. Borne out of this review, three technologies 
warranted further consideration: reciprocating engine, gas turbine, and microturbine. 
 

Reciprocating Engine 
 

The reciprocating, or internal combustion, engine is categorized as either spark-ignited or 
compression-ignited. Spark-ignited engines are typically fueled with lean NG but can also be 
fueled by gasoline, NG, hydrogen, or syngas. Compression-ignited engines are typically fueled 
by diesel fuel or other heavy oils. The output shaft of the engine is connected to an electrical 
generator to produce electricity. Compression–ignition engines can also be set up to operate on a 
bifuel configuration utilizing both diesel and NG. 
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Table 39. Summary of Technology Characteristics Review 
Technology Reasons for Further Consideration Reasons Against Further Consideration 
Reciprocating Engine  Technology maturity 

 Scale 
 Electric efficiency 
 Cost 
 Equipment life 
 Fuel pressure 
 Fuel flexibility  

(requires specific engine setup) 
 NOx emissions (rich gas may pose 

challenge) 

 

Gas Turbine  Technology maturity 
 Scale 
 Electric efficiency 
 Cost 
 Equipment life 
 Fuel flexibility (rich gas may pose 

challenge) 
 NOx emissions (rich gas may pose 

challenge) 

 

Steam Turbine  Technology maturity 
 Scale 
 Cost 
 Equipment life 
 Fuel flexibility 
 NOx emissions (combustion method 

dependant) 

 Electric efficiency 
 

Microturbine  Electric efficiency 
 Fuel pressure 
 Fuel flexibility  
 NOx emissions  

 

Fuel Cell  Electric efficiency 
 Fuel pressure 
 NOx emissions  

 Technology maturity 
 Scale 
 Cost 
 Equipment life 
 Fuel flexibility (hydrogen fuel only) 

 
 

Gas Turbine 
 

Gas turbines can be used to generate electricity from a variety of gas feedstocks, including 
gasification syngas, NG, and others. Gas turbines can be configured as simple cycle or 
combined-cycle systems. Simple cycle systems involve the use of a turbine fueled by gas to 
compress air. As the compressed air enters an expansion turbine, it turns an electrical generator. 
Combined-cycle systems also incorporate subsystems that recover exhaust heat and convert it to 
electricity. 
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Steam Turbine 
 

Steam turbines, as the name implies, use a fuel to create steam in a boiler. The steam is 
delivered to a steam generator producing electricity. Steam turbines are unique in that the fuel-
burning/steam-generating process is separate from the electrical generating process allowing 
unmatched fuel flexibility. 
 

Microturbine 
 

Microturbines are basically smaller versions of gas turbines consisting of the following 
main components: 
 

• Compressor 
• Combustor 
• Turbine 
• Generator 
• Recuperator 
• Waste heat recovery system 
 
Microturbines are typically classified by their physical component configuration—single-

shaft or two-shaft, simple-cycle or recuperated, intercooled, and reheat—typically operate on 
traditional gases such as NG. The microturbine can also be operated on other gases including 
gasifier syngas. EERC research has demonstrated that microturbines can successfully be 
operated on off-spec, high-Btu, and/or low-Btu gases such as oil field sour gas.  

 
Fuel Cell 

 
There are several types of fuel cells, each of which creates direct current electricity from 

electrochemical reactions. Although each type of fuel cell functions basically the same, they 
convert hydrogen to electricity in much different ways and are best suited for different 
applications. Simply put, hydrogen fuel, air or oxygen, and sometimes carbon dioxide 
(depending on the fuel cell) are delivered to the fuel cell, producing electricity and other by-
products such as water, waste heat, and excess gas (again, depending on the fuel cell). 
 

Initial Evaluation 
 

Given the focus on nontraditional NG (i.e., rich gas with little processing) and a desired 
scale of 0.5 to 10 MW, three technology platforms were considered to be most technically and 
economically viable and are discussed further, reciprocating engines, gas turbines (including 
microturbines), and steam turbines. Each of these technologies has specific advantages, and 
depending on the application, a single technology may be best suited to meet the needs of the 
application. A summary of power generation scenarios is presented in Table 31. 
 

When evaluating power generation scenarios, the projects were characterized into two 
distinct categories based on the primary use of the electricity: 
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Table 40. Summary of Power Generation Scenarios 
 
Description 

 
Example 

Power on 
Required 

Applicable 
Technology 

 
General Logistics 

Grid Support: generator 
running on flare gas, producing 
electricity put on the grid. 

 1–10 MW  Reciprocating 
 Gas turbine 
 Steam turbine 

 Flare gas to system 
 Electrical to grid 

Local Power – Small: 
generator running on flare gas, 
producing electricity for local 
consumption. 

 Pump jack 
 Cellular 

tower 

0.2–0.5 MW  Reciprocating 
 Gas turbine 
 Steam turbine 
 Microturbine 
 Fuel cell 

 Flare gas to system 
 Electrical to local 

load 
 Excess electricity to 

grid 
Local Power – Midsize: 
generator running on flare gas, 
producing electricity for local 
consumption. 

 Mancamp 
 Clustered 

wells 
 Drilling rig 

0.5–1 MW  Reciprocating 
 Gas turbine 
 Steam turbine 
 Microturbine 

 Flare gas to system 
 Electrical to local 

load 
 Excess electricity to 

grid 
Local Power – Large: 
generator running on flare gas, 
producing electricity for local 
consumption. 

 Industrial 
plant 

1–10 MW  Reciprocating 
 Gas turbine 
 Steam turbine 

 Flare gas to system 
 Electrical to local 

load 
 Excess electricity to 

grid 
 

 
1) Grid support – power generation for direct delivery onto the electrical grid. 

 
2) Local power – power generation for local use with excess generation (if any) sent to the 

electrical grid.  
 
A grid support project, although not without logistical issues, is straightforward in design, 
whereas a local power project tends to be more complex because of the introduction of 
significantly more design variables. The evaluation of power generation scenarios assumes that 
adequate electrical infrastructure exists to accommodate the additional electricity these systems 
generate (if delivered to the electrical grid).  
 

Grid Support 
 

A grid support project is fairly simple by description. Wellhead gas (with limited cleanup) 
is piped to the electrical generator. The generator burns the gas and produces electricity, which is 
put on the electrical grid for distribution by the local utility to its customers. 
 

The scale of these projects tends to be driven by capital costs (and cost recovery), and often 
there is an economy of scale that typically results in larger generators being more economically 
feasible. This larger scale, in turn, usually favors reciprocating engines, gas turbines, and steam 
turbines and precludes technologies such as microturbines and fuel cells. 
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Local Power 
 

A local power project is similarly described as wellhead gas (with limited cleanup) which 
is piped to the electrical generator, and the generator burns the gas and produces electricity. But 
in this case, the electricity is first used to power local consumption, with any excess electricity 
put on the electrical grid for distribution by the local utility to its customers. 
 

Although capital costs are still vitally important, the scale of the local power project is 
equally driven by matching the local electrical load with generation. These projects can range 
widely in scale, depending on the goal of the project (i.e., satisfy only local load, satisfy local 
load with minimal excess generation, or satisfy local load with significant excess generation). 
For this reason, most power generation technologies may be appropriate, depending on the 
project. 

 
Detailed Evaluation 

 
As indicated in earlier sections, Bakken associated gas is high in NGLs, resulting in a gas 

with very high Btu values (approximately 1400 Btu/cf). Since the NGLs make up a majority of 
the economic value of the rich gas, removal of at least a portion of the NGLs from the rich gas is 
beneficial to the economics of the project and may be advantageous to (or required by) the 
operation of the electrical generator. All scenarios were evaluated with the following 
assumptions:  

 
 Rich gas flow rate from the wellhead (average of all Bakken wells): 300 Mcf/day 

 
 Rich gas flow rate from the wellhead (local power scenarios): 600 Mcf/day 

 
 Rich gas flow rate from the wellhead (grid support scenarios): 1000–1800 Mcf/day 

 
 Rich gas Btu content: 1400 Btu/cf 

 
 NGL removal system used 

 
 Volume of NGLs existing in rich gas: 10–12 gallons/Mcf 

 
 Volume of NGLs removed from rich gas: 3–5 gallons/Mcf (1000 Mcf/day would result 

in 3000–5000 gallons of NGLs/day) 
 

 NGLs stored in 200-psi vessels at the location and periodically trucked to an off-
loading facility 

 
 NGL price (value) at the off-loading facility: $1.00/gallon 

 
 Lean gas flow rate from NGL removal system: 850 Mcf/day 

 
 Lean gas Btu content: 1210–1250 Btu/cf 
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 Lean gas price (value) consumed by electrical generator: $2.00/Mcf 
 

 Price (value) of electricity generated and delivered to the grid: $0.05/kWh 
 

 Price (value) of electricity generated and consumed on-site: $0.09/kWh 
 

In addition to the assumptions listed above, the gas composition of the lean gas  
(1210–1250 Btu/cf) was assumed to be as represented in Table 32. 

 
 
Table 41. Assumed Lean Gas Composition 
Component mol% 
H2O 0.01 
N2 6.10 
CO2 0.62 
H2S 0.00 
C1 66.33 
C2 19.42 
C3 6.62 
C4 0.84 
C5 0.06 
C6 0.00 
C7 0.00 
C8 0.00 
C9 0.00 
C10–C11 0.00 
C12–C15 0.00 

 
 
Two power generation scenarios were evaluated for each category. In the grid support 

category, a reciprocating engine and a gas turbine scenario were evaluated, and in the local 
power category, the authors evaluated both a reciprocating engine and a microturbine. 
 

For each of the scenarios, capital expenditures for land acquisition and the NGL removal 
and storage system were deemed common for all scenarios and, therefore, described separately. 
 

Land Acquisition 
 

Analysis of the power generation scenarios assumed that the placement of the power 
generation system and its related components would not require the purchase or rental of 
additional land area. 

 
NGL Removal and Storage 

 
The removal of NGLs from the rich gas, although not necessarily required, greatly 

increases the economics of a power generation project, improves the performance of the genset, 
and reduces the loss of resource (when flaring is necessary). 
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Table 43. Total Cost Summary, Grid Support – Reciprocating  
Engine Scenario 
 Cost 
Capital Costs  

NGL Removal and Storage System $2,500,000 
Electrical Generator System $4,000,000 
Balance of Plant $1,000,000 

Total Capital Cost $7,500,000 
  
Annual O&M Costs  

NGL System $250,000 
Electrical Generator System $400,000 

Total O&M Cost $650,000 
 
 

Using the assumptions presented at the beginning of the Detailed Evaluation section, the 
process and product description can be described as follows. 1000 Mcf/day of associated 
wellhead gas from the heater/treater would be processed by the NGL removal system into 
850 Mcf/day of lean gas and 4000 gallons of NGLs. The NGLs are pumped to on-site storage 
and delivered to market via truck. The lean gas is supplied to the electrical generation system 
which would consume all 850 Mcf/day and produce 114,000 kWh of electricity per day that 
would be transmitted to the electrical grid. The revenue streams for these products are 
summarized in Table 35. 

 
 
Table 44. Summary of Product Revenues, Grid Support – Reciprocating  
Engine Scenario 
 
Product 

 
Quantity 

Assumed 
Value 

Daily 
Revenue 

Annual 
Revenue1 

NGLs 4000 gpd $1.00/gal $4000 $1,168,000 
Electricity  114,000 kWh/day $0.05/kWh $5700 $1,664,400 
Total   $9700 $2,832,400 

1 Assumes 80% annual system availability. 
 
 

Grid Support – Gas Turbine Scenario 
 

As in the previous scenario, the grid support – gas turbine scenario involves supplying rich 
gas from the wellhead to a NGL separation system. NGLs are stored on-site, and lean gas is fed 
to a gas turbine. Electricity produced from the gas turbine is delivered to the electrical grid. As 
shown in Figure 34, the process flow diagram is the same as the reciprocating engine scenario. 

 
Again targeting a scale of approximately 5 MW for this scenario, quotations were solicited 

from vendors. A budgetary cost estimate for a gas turbine genset comprising three 2000-kW 
generators was $6,400,000 ($1067/kW). Again, the O&M cost was assumed to be 10% of the 
capital cost, or $640,000 annually. The total costs for this scenario are summarized in Table 36. 
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Table 47. Total Cost Summary, Local Power –  
Reciprocating Engine Scenario 
 Cost 
Capital Costs  

NGL Removal and Storage System $2,500,000 
Electrical Generator System $200,000 
Balance of Plant $500,000 

Total Capital Cost $3,200,000 
  
Annual O&M Costs  

NGL System $250,000 
Electrical Generator System $20,000 

Total O&M Cost $270,000 
 
 

Using the assumptions presented at the beginning of the Detailed Evaluation section, the 
process and product description can be described as follows. 600 Mcf/day of associated wellhead 
gas from the heater/treater would be processed by the NGL removal system into 510 Mcf/day of 
lean gas and 2400 gallons of NGLs. The NGLs are pumped to on-site storage and delivered to 
market via truck. The lean gas is supplied to the electrical generation system which consumes 
101 Mcf/day and produces 6000 kWh of electricity that serves on-site electrical load. The 
remaining lean gas (approximately 499 Mcf/day) is either stored on-site for truck transport to the 
pipeline or pumped directly into a NG-gathering system for delivery to a gas-processing plant. 
For this example, we will assume excess gas is sold. The revenue streams for these products are 
summarized in Table 39. 
 
 

Table 48. Summary of Product Revenues, Local Power –  
Reciprocating Engine Scenario 

 
Product 

 
Quantity 

Assumed 
Value 

Daily 
Revenue 

Annual 
Revenue1 

NGLs 2400 gpd $1.00/gal $2400 $700,800 
Electricity 6000 kWh/day $0.09/kWh $540 $157,680 
Lean gas 499 Mcf/day $2.00/Mcf $998 $291,416 
Total   $3938 $1,149,896 
1 Assumes 80% annual system availability. 
 
 
Local Power – Microturbine Scenario 

 
This scenario involved the removal of NGLs prior to delivery of gas to the microturbine 

and the use of generated electricity to satisfy local electrical demand, with the excess electricity 
delivered to the grid. The scale of this scenario is smaller than other scenarios to provide a range 
of generation scales. For this reason, two scenarios were examined at a scale close to 200 kW. 
Figure 36 shows the process flow diagram of the local power – microturbine scenario. 
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In both cases, the vendor offers a factory protection plan (FPP) that covers all scheduled 
and unscheduled maintenance of the system as well as parts, including an overhaul or turbine 
replacement at 40,000 hours of operation. The FPP “locks in” the annual O&M cost of the 
system, and in both scenarios presented below, it is assumed that the FPP is purchased. 

 
For the purposes of this report the authors chose to analyze the smaller package (four 65-

kW microturbines) as it more closely matched the 200-kW scale and provided more flexibility 
should a single turbine need to be taken off line for maintenance or some other reason. 
 

Four 65-kW Microturbine System 
 

This system consists of four 65-kW Capstone microturbines combined in a single package 
nominally rated at 260 kW of electrical output. Under the conditions discussed above, the system 
would be derated and provide approximately 195 kW of power (or 25% derate). Table 41 
provides a summary of the capital and O&M costs using the costs discussed in this section and 
costs presented in the NGL Removal and Storage section. 
 
 

Table 50. Total Cost Summary, Local Power – Microturbine 
Scenario (Four 65-kW) 
 Cost 
Capital Costs  

NGL Removal and Storage System $2,500,000 
Electrical Generator System $383,200 
Balance of Plant $500,000 

Total Capital Cost $3,383,200 
  
Annual O&M Costs  

NGL System $250,000 
Microturbine FPP $33,640 

Total O&M Cost $283,640 
 
 

Using the assumptions presented at the beginning of the Detailed Evaluation section, the 
process and product description can be described as follows. 600 Mcf/day of associated wellhead 
gas from the heater/treater would be processed by the NGL removal system into 510 Mcf/day of 
lean gas and 2400 gallons of NGLs. The NGLs are pumped to on-site storage and delivered to 
market via truck. The lean gas is supplied to the electrical generation system which consumes 
49 Mcf per day and produces 4683 kWh of electricity that serves on-site electrical load. The 
remaining lean gas (approximately 461 Mcf/day) is either stored on-site for truck transport to the 
pipeline or pumped directly into a NG-gathering system for delivery to a gas-processing plant. 
The revenue streams for these products are summarized in Table 42. 
 

Drilling Rig Power 
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 The use of wellhead gas as a fuel for drilling operations derives advantages from both 
CNG and power production scenarios described previously. In reciprocating diesel engines, rich  
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Table 51. Summary of Product Revenues, Local Power – Microturbine  
Scenario (Four 65-kW) 
 
Product 

 
Quantity 

Assumed 
Value 

Daily 
Revenue 

Annual 
Revenue1 

NGLs 2400 gpd $1.00/gal $2400 $700,800 
Electricity  4683 kWh/day $0.09/kWh $421 $122,932 
Lean gas 461 Mcf/day $2.00/Mcf $922 $269,224 
Total   $3743 $1,092,956 
1 Assumes 80% annual system availability. 

 
 

wellhead gas can be combusted with little more than dewatering as pretreatment. Further, since 
the fuel displaced is high-priced diesel fuel, the economics are favorable over other lower-priced 
power production applications like large-scale coal or natural gas-based electrical production. 
 
 As a separate task under this project, the EERC is working with Continental Resources, 
ECO-AFS, Altronics, and Butler Caterpillar to conduct a detailed study and field demonstration 
of the GTI Bi-Fuel System®. Within that task, the EERC conducted a series of tests at the EERC 
using a simulated Bakken gas designed to test the operational limits of fuel quality and diesel 
fuel replacement while monitoring engine performance and emissions. Additionally, a field 
demonstration of the Bi-Fuel System will be completed in the summer of 2012 during which 
engine performance, emissions, and fuel savings will be monitored for the duration of a two-well 
batch drilling operation. The field demonstration will provide researchers and project partners 
detailed information on how the system performs in real well drilling operations and validate fuel 
savings achievable over extended operation. 
 
 ECO-AFS has recently installed several Bi-Fuel Systems on rigs in the Williston Basin. 
Early data suggest that diesel fuel savings of approximately $1 to $1.5 million can be achieved 
annually. Under typical conditions, operators can expect to achieve diesel replacement of  
40%–60% at optimal engine loads of 40%–50%. 
 
 Because the Bi-Fuel System is an aftermarket addition providing natural gas to the air 
intake, engine performance is not altered in diesel-only operation. If the natural gas supply is 
interrupted or unavailable at a location, the engines can continue to operate on diesel fuel without 
requiring any alterations. The control system of the Bi-Fuel System also provides a number of 
safety protocols that simply stop gas flow if any engine performance parameters exceed 
manufacturer-recommended limits. The Bi-Fuel System controls continue to monitor engine 
performance, and when engine operational parameters return to acceptable ranges, gas can again 
be supplied to the engines. 
 
 Total installed capital cost for the Bi-Fuel System ranges from $200,000 to $300,000. 
Once hardware is installed, additional costs will be incurred to bring wellhead gas to the engine 
building. These costs can vary greatly depending on distance to the nearest gas source and gas 
lease terms. These costs have not been included in this assessment. 
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Evaluation Summary 
 

A wide variety of power generation technologies exist that can utilize rich gas of varying 
quality to produce electricity. Power generation technologies also match the assortment of 
wellhead gas flow rates and can be constructed for mobility if needed. 

  
For these reasons, power generation as an end use technology for NG, whether it be flared 

associated gas, gathered but untreated gas, or processed NG, is a strong candidate technology for 
consideration.  

 
From an economic perspective, the hypothetical power generation scenarios presented in 

this section and summarized in Table 43 provide a preliminary technical and economic 
evaluation that should afford an initial indication of project feasibility. Many assumptions were 
made and the reader should carefully consider the relevance of these assumptions to their 
specific circumstances. 

 
 
Table 52. Summary of Power Generation Scenarios 
 
Scenario 

 
Capital Cost 

Annual 
O&M Cost 

Annual 
Revenue1 

Grid Support – Reciprocating Engine $7,500,000 $650,000 $2,832,400 
Grid Support – Gas Turbine $9,900,000 $890,000 $4,152,240 
Local Power – Reciprocating Engine $3,200,000 $270,000 $1,149,896 
Local Power – Microturbine $3,383,200 $283,640 $1,092,956 
1 Assumes 80% annual system availability. 

 
 

Based on cost and revenue assumptions provided in the previous sections, all scenarios 
provided a simple payback of 3 years or less. It should be noted that since the contractual 
arrangements vary widely regarding “ownership” of the rich wellhead gas, no cost was assigned 
to obtaining the wellhead gas in the scenarios presented. Readers should take into account this 
input cost based on their specific situation as it will impact the overall economics significantly in 
certain cases. 

 
In addition to rig power, discussed in the previous section, there are a number of other 

potential natural gas uses related to oil production and operations that could take advantage of 
rich gas on a well site. Although rig power provides one of the largest demands for gas use, the 
heating of drilling fluids during winter months can be achieved with rich gas replacing diesel or 
propane as the more common fuel. The only technology modification required is a burner 
modification, provided that gas is already available at the drilling site. 

 
Once drilling is complete, rich gas at the drilling location can be used to provide power for 

hydraulic fracturing operations. Bi-fuel systems or dedicated natural gas engines can be utilized 
to provide power for fracturing operations, thereby decreasing diesel deliveries and reducing the 
fuel costs associated with these operations. Gas availability, in terms of volumetric flow rate, 
will need to be investigated since the flow available may be insufficient to provide all of the fuel 
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required for fracturing operations. However, in a bi-fuel type application, any shortage of gas 
would be made up with diesel. 

 
Once production is under way, gas from the producing well or gas transported to the 

location from nearby wells can continue to be used to provide power for production activities 
when electrical service is not available. Although the gas use is relatively low for these 
operations, some remote locations may benefit from on-site generated power. Lastly, wellhead 
gas could be used to fuel workover rigs used intermittently to maintain producing wells. For 
workover rigs powered by the truck’s CNG or LNG engine, wellhead gas would not provide a 
viable alternative. However, workover rigs with separate generators capable of operating on 
wellhead gas could benefit from the low-cost gas available on location. 

 
Virtually any platform or application that utilizes diesel fuel as part of its operation may 

warrant the evaluation of using natural gas because of the availability and price of the natural 
gas. However, there are a number of contractual logistical, technical, and economic components 
that need to be vetted to determine whether a project makes sense. 

 
Due diligence is required on the part of the reader to evaluate the cost impacts of 

regulatory, permitting, and engineering design requirements, which were beyond the scope of 
this report. 
 
 
APPLICATION III – CHEMICALS DERIVED FROM BAKKEN ASSOCIATED GAS 
 

Overview of NG and NGL-Based Chemical Industry 
 
Raw NG, as produced and flared on well sites, is a mixture of many chemical compounds. 

The relative amounts of these components vary from well to well and over time from a single 
well. The potential uses and value of individual components also varies from component to 
component and over time because of market conditions. What all the components have in 
common, are high vapor pressures that permit them to escape from the liquids with which they 
might have been associated. 

 
Raw NG constituents can be classified into three categories: methane, NGLs (also termed 

condensates), and impurities. Characteristically, the relative amount of a hydrocarbon component 
is inversely related to its size; thus methane, the smallest hydrocarbon, is predominant, with 
progressively decreasing amounts of ethane, propane, butane, pentane, hexane, and larger-
molecular-weight hydrocarbons. Numerous inorganic compounds are also present, the most 
common being water, carbon dioxide, hydrogen sulfide, mercury, nitrogen, and helium. By 
category, NGLs have the highest value, methane less, and contaminants, for the most part, are 
nuisance waste products. A comparison of the boiling point of major NG hydrocarbons is 
described in Table 44. 
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Table 53. NG Component Boiling Points 
 
Component Chemical 
Name Chemical Formula 

Boiling 
Point 

Range, °F 
Methane CH4 −259 
Ethane CH3CH3 −128 
Propane CH3CH2CH3 −44 
i-Butane CH3CH(CH3)2 14 
n-Butane CH3CH2 CH2 CH3 31 
neo-Pentane (CH3)2C(CH3)2 49 
i-Pentane CH3CH(CH3)CH2CH3 82 
n-Pentane CH3CH2CH2CH2CH3 97 
Hexanes C6H14 122–156 

 
 

Each hydrocarbon extracted from raw NG has a set of uses or can be further processed into 
products. A summary of these uses and products is provided as follows: 

 
 Methane’s principal use is as a fuel to produce heat for buildings and chemical and 

other processes as well as for generating electric power. To a much lesser extent, 
methane is a feedstock for nitrogen-based fertilizers such as ammonia, urea, and 
ammonium nitrate; for chemicals such as methanol, acetic acid, formaldehyde, and 
hydrogen; and for fuels such as dimethyl ether (a potential diesel fuel substitute) and 
Fischer–Tropsch (FT)-based transportation fuels. In the United States, roughly equal 
shares of NG deliveries to consumers go to 1) residential and commercial customers, 
primarily for heating; 2) utilities for electric power generation; and 3) industrial 
customers for heat and chemical feedstock. (U.S. Energy Information Administration, 
2012b). 
 

 Ethane is primarily used as a chemical feedstock for production of ethylene and 
derivatives such as polyethylene, ethylene glycol, and ethylene oxide. When feedstock 
prices are depressed relative to fuel prices, ethane also can be rejected into NG pipelines 
to the extent allowed by pipeline operators.  

 
 Propane’s primary use is residential and commercial heating with the remainder being 

used by 1) industry for chemical feedstock and other uses, 2) agriculture for heating and 
drying, and 3) commercial entities as a motor fuel for forklifts and other vehicles. Of 
propane consumed in the United States in 2010, about half was used for residential and 
commercial heating and a third for chemical feedstock for chemicals such as propylene 
and polypropylene (Lippe, 2011). 

 
 There are two forms of butane (n-butane, a straight chain hydrocarbon, and i-butane, a 

branched hydrocarbon) that possess slightly different chemical properties and uses. The 
majority of butanes are used for heating when alone or combined with propane to create 
liquefied petroleum gas (LPG) and as petroleum refinery feedstock, eventually 
becoming motor fuel. Regulatory restrictions on motor fuel vapor pressure, however, 
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Dakota processed about 0.6% of the U.S. total. Two other regions performed significant 
processing in 2010: Alaska (17%) and the Rocky Mountain region (Colorado and Wyoming had 
a combined output of 18% of U.S. processing). Texas’s disproportionate processing (26% of 
U.S. capacity, but 28% of output) was due to its operating at 83% of capacity—while the rest of 
the country averaged 66%—which indicates an efficient use of resources and potential upcoming 
need to expand capacity. During the period 2004–2009, average plant capacity increased from 
114 to 139 MMcfd. 

 
Figure 41 exhibits the locations of processing plants in North Dakota in 2011. The number 

and capacity of plants in the state is forecast to increase substantially between 2006 and 2012 as 
projected in Table 45. 

 
Because of expansion in gas-gathering and processing infrastructure, flaring of NG is 

declining in North Dakota, having peaked in 2011 with 35% of gas being flared. In April 2012, 
North Dakota Department of Mineral Resources statistics showed NG production was up to 
650,000 Mcfd, with 34% being flared. As new gas-processing plants are built and commissioned 
in 2012, the fraction of gas flared is expected to decrease (Persily, 2012). 
 

NG Distribution Infrastructure 
 
As Figure 42 indicates, three interstate NG transmission pipelines pass through and are 

accessible within North Dakota. These include WBIP, which extends through eastern Montana, 
northern Wyoming, western South Dakota, and across North Dakota; NBIP, which connects to 
an Alberta collection system in Montana and extends through the Dakotas, Minnesota, Iowa, and 
Illinois to northwest Indiana; and the Alliance Pipeline, which extends from British Columbia 
through North Dakota, Minnesota, and Iowa to Illinois. The capacity of the three pipelines is 
adequate to absorb North Dakota’s growing NG production—which has expanded by 
24 MMcf/month over the past year—for an extended period of time. Growth will be handled by 
the addition of receipt and delivery points, increased compression, and increased ethane rejection 
without expanding or replacing trunk pipelines. 
 

In 2008, WBIP added 42 MMcfd (expandable to 60 MMcfd) to its system and has 
proposed adding roughly 20 MMcfd of delivery capacity in northwestern North Dakota to be 
constructed later this year.  
 

NBIP, with a current capacity of 2.401 Bcfd of which 2.171 Bcfd is contracted firm, will be 
receiving NG from ONEOK’s three new 100-MMcfd processing plants and will commence 
service in 2012–2013. The incremental load of these plants on the NBIP will be attenuated 
somewhat by ONEOK’s construction of a 60,000-bpd NGL pipeline that will connect to 
William’s Overland Pass Pipeline in Colorado. ONEOK’s pipeline will permit capture of 
valuable ethane that otherwise would be rejected into the NG product and result in NG flow 
reduction of up to 20%. 
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Petrochemical Industry Relevance in North Dakota  
 

North America has four major petrochemical centers: the Mt. Belvieu (TX) and Conway 
(KS) hubs, Edmonton (AB), and Sarnia (ON). Mt. Belvieu’s capacity far exceeds the other 
regions and is considered the price reference point for North American NGLs. Mt. Belvieu has 
an NGL storage capacity of 200 MMbbl; Williams operates storage in Conway with a 20-MMbbl 
capacity. Alberta’s AEGS (Alberta Ethane-Gathering System) has a 5-MMbbl capacity. BP 
operates 12 salt caverns in Sarnia that hold finished products and possess a capacity of 
5.0 MMbbl (6.8 MMbbl of surface brine pond capacity). EIA reported PADD (Petroleum 
Administration for Defense Districts) III (including the USGC) August 2011 NGL inventory to 
be 74.7 MMbbl, which is only a 37% utilization rate, suggesting additional storage capacity 
exists to support the growing shale gas production.  

 
Traditionally, the North American petrochemical industry has been located in areas that 

possess large gas reserves and geologic storage features like salt domes and depleted reservoirs 
where gas, NGLs, and intermediate products can be stored in very large quantities. Currently, 
96% of U.S. ethane-cracking capacity is concentrated on the USGC, especially Texas and 
Louisiana. As illustrated in Figure 44, the USGC possesses a large fraction of gas reserves and, 
as mentioned previously, has significant geologic storage capacity to accommodate the industry. 
Based on these factors, significant infrastructure has been built around the USGC. Distribution 
capacity exists to transport gas and gas liquids to the region from across North America. 
Additionally, NGL fractionation, cracking, and downstream processing capacity exist to convert 
these hydrocarbons into products that are shipped around the world. As a result of the large 
volume of gas and NGLs processed in the region, it has become the basis and reference point for 
financial markets. 

 
As described herein, chemical production capital investment decisions are complex, 

involving a myriad of factors, relationships, and timing that consider complete supply chains. A 
detailed discussion of how market factors impact the petrochemical industry and plans for 
infrastructure expansion is provided in Appendix A. Such factors include the following: 
 

 Capital efficiency 
 Economy of scale (larger units are cheaper to build/operate per pound of product) 
 High utilization rates (run constantly at full throughput) 
 Long life (operate plant for decades) 
 Use of synergies to reduce required investment, such as restarting shuttered plants, 

converting units from petroleum-based feedstock to NG-based feedstock, relieving 
capacity constraints in existing plants, and sharing facilities 

 
 Proximity to long-term: 

 Cheap and abundant feedstock and utilities 
 Large customer markets 
 Cheap transportation 
 Cheap storage 

 
 Government regulatory and business climate, plus grants and tax incentives 
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Chemicals in North Dakota can be produced at two different locations, the well site and 
downstream of gas processing, each of which has different advantages and issues. The principal 
advantage of well site chemical production in North Dakota is access to cheap gas that would 
otherwise be flared. This advantage, however, is temporary, existing only until infrastructure 
appears. Agricultural chemical production, such as fertilizer, possesses an additional advantage 
of a local product market. Two significant disadvantages of well site chemical production are 
lack of economy of scale and decreasing utilization because of production decline over the life of 
a well. The production processes with the best opportunity for economic success at the well site 
are simple processes, such as NGL collection or processes that manufacture products for which a 
local market exists and are suited for downsizing to small scales, such as novel fertilizer 
production technologies or innovative gas-to-liquid approaches that can capitalize on the price 
difference between gas and liquid transportation fuels. All such processes would benefit by being 
mobile to periodically relocate to better-producing wells and avoid reduced utilization rates. 

 
North Dakota’s NGL production is forecast to be adequate to support NGL-based chemical 

manufacturing. Based on the generic raw NG composition that was presented earlier in this 
report and at the 600,000-Mcfd raw NG production level, adequate ethane and propane 
(120,000 bpd) could be produced to support two world-scale crackers. At 900,000 Mscfd, three 
world-scale crackers could potentially be supported. If constructed, it is likely that 
polymerization or chemical plants would also be constructed to convert the output into plastics 
and chemicals. Such construction, however, would be contrary to the petrochemical industry’s 
proclivity to build processing facilities on and transmit feedstock to the USGC.  

 
A construction decision in North Dakota would benefit from many factors discussed 

previously, including large geologic storage, downstream processing capacity, transportation 
routes for products, and supporting infrastructure. Currently, much of the needed infrastructure 
does not exist, and as such, pipeline and rail export to existing industry hubs has been the 
standard practice. A chemicals industry could develop in North Dakota that could use pipeline 
NG feed to produce chemicals of regional interest or produce niche NGL-based chemicals, but it 
is unlikely that investment for a conventional petrochemicals industry could be attracted unless 
profound improvements were made to resolve critical issues.  

 
Conceptual Chemical Production in North Dakota 

 
Chemical production near well sites has distinct benefits and disadvantages. Benefits 

include access to NG that would otherwise be flared, which could provide an economic 
advantage of cheaper NG feedstock and an environmental benefit of avoiding flaring, and 
production of chemicals that can be used locally, such as ammonia and motor fuel, which 
reduces costs and safety risks associated with long-distance transport. A major disadvantage is 
the greater unit cost of producing at smaller scales. The following considers production of 
ammonia and FT motor fuel from NG that would otherwise be flared at Bakken well sites. 

 
Of the Bakken wells that flared in December 2011, the largest two flared more than 

2000 Mcfd and the median flared about 320 Mcfd. Economy of scale drives toward constructing 
and gathering from the largest producing sites. However, NG production characteristically 
declines over time which would result in underutilization of the equipment if the plant was 
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designed to capture at initial production rates. This effect and that of varying NG price are 
depicted in Table 47, which shows estimated capital and operating costs for ammonia production 
based on a design described in Appendix B. The NG feed is assumed to be that of the rich gas 
composition discussed earlier in this report. 
 
 
Table 56. Ammonia Production Cost Estimate at Different Scales and Rates 
 Large Unit/Large 

Flow 
Large Unit/Small 

Flow 
Small Unit/Small 

Flow 
NG Feed Rate, Mscfd 2000 320 320 
Capacity, ton/day 90.1 90.1 14.4 
Production, ton/year 31,227 4,996 4,996 
Utilization Rate, % 95 15 95 
Existing Technology    
Fixed Capital Investment, $ 52,389,617 52,389,617 17,385,099 
Product Cost ($0 rich gas), 
  $/ton 

305.71 1288.91 517.56 

Product Cost ($4 rich gas), 
  $/ton 

395.71 1378.91 607.56 

Product Cost ($8 rich gas), 
  $/ton 

485.71 1468.91 697.56 

 
 

The wellhead prices represent those if flared gas were free, if it were sold at EIA’s forecast 
price for the 2015–2020 period, and if it were sold near the peak price in 2005. 
 

While the above data were intended to be realistic, it is likely that they are optimistic, 
which is characteristic of early-stage cost estimates. Despite this, several observations may be 
made from the data: 
 

 Economy of scale is evident as the larger flow achieves lower production cost. 
 

 No ROI assumed. 
 

 The deleterious effect of underutilization is evident as the capital cost of an oversized 
unit substantially increases the unit production cost; underutilization, of course, can 
occur even if the unit is not oversized because of downtime or loss of the unit before the 
end of its 20-year depreciated life. 
 

 NG price can significantly impact production cost. 
 
 General expenses (sales, administrative, research and engineering) at the 1% of sales 

level have little impact on product cost. 
 
 While large-scale units are routinely constructed and operated, units at this scale are not 

routinely manufactured or operated so should be considered developmental items. 
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When compared to production rates of industrial ammonia plants, which have grown from 
about 200 tons/day in the 1950s to 2200 tons/day in design in 2002, well site units are miniscule 
and disadvantaged. Novel technologies, such as H2Gen’s compact reformer, may provide a way 
to reduce capital cost from smaller-scale systems and reduce this handicap. The size and 
complexity of a plant at even the 14-ton/day scale is too large to be considered portable—
moving such a plant would be possible, but expensive and time consuming.  
 

The U.S. Department of Agriculture Economic Research Service has reported that average 
U.S. farm prices for anhydrous ammonia have risen from $250/ton 10 years ago to $783/ton in 
March 2012. The above analysis indicates that a 10% before-tax return on investment is possible, 
even at a 320-Mcfd feed rate, with appropriate technology, and low NG feedstock and general 
expenses. It should be noted, however, that in 2008, ammonia prices were at $755/ton but fell to 
$499/ton 2 years later, which likely would result in a negative return on investment for a small 
unit. These economics could be favorably impacted if fines were imposed on flaring and 
producers would pay a charge to dispose of the NG. Ultimately, the economics will have to 
compete with wellhead prices as gas gathering is deployed. 

 
In addition to ammonia, another product derived from NG that has a local market in the 

Bakken is liquid motor fuel. On an energy basis, NG traditionally is priced less than crude oil, 
recently by as much as one-tenth the price of crude on the spot market. Consequently, the 
opportunity exists for a significant upgrade in value if NG could be converted inexpensively to a 
petroleum product such as diesel fuel. A process discovered in the 1920s—the FT process—is 
the preferred means of accomplishing this conversion and offers the prospect of providing a 
high-quality, low-sulfur diesel fuel into a region that is experiencing tight supplies. 
Unfortunately, the capital cost associated with FT fuels production is high even at very large 
scale. Currently, there are five gas-to-liquids (GTL) plants in the world:  
 

 Shell’s $1 billion 14,700-bpd Bintulu (Malaysia) facility 
 
 Sasol’s $250 million 10,000-bpd GTL Mossgas (South Africa) plant (the low capital 

cost of the plant likely is due in part to its location within a larger coal-to-liquids facility 
with which it can share resources.) 

 
 Sasol’s $1 billion 34,000-bpd Oryx (Qatar) plant 
 
 ChevronSasol’s $8 billion 33,000-bpd Escravos (Nigeria) facility 
 
 Shell’s $19 billion 140,000-bpd GTL and 120,000-bpd NGL Pearl (Qatar) plant 

 
It should be noted that the Escravos plant is about a decade late and costs five times the 

original estimate. Scaling down such technology to a 320-Mcfd unit would produce about 32 bpd 
of FT liquids and likely be exorbitantly expensive when scaled down. A few companies have 
claimed to be developing novel small-scale technologies that might be applicable. 

 
Velocys is a microchannel equipment developer that has been working on GTL technology 

for more than a decade. The company has three demonstration units under way: 50-bpd and  
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25-gallon/day biomass-to-liquids units in Brazil and Austria, respectively, and a 6-bpd GTL unit 
in Brazil. Heatric (a subsidiary of Meggitt), which is well known for its compact heat exchangers 
used on oil platforms, claims to have developed hydrogen reactors and studied GTL. 
CompactGTL, a relatively new microchannel equipment developer, is developing equipment 
especially for associated gas and is currently demonstrating a unit in Brazil. Other possible 
developers include IMM, KarlsrubeFZK, Corning Degussa/Evenik, Alfa Laval, and Chart. Some 
developers claim that their units at small scale can be skid-mounted, so they have some mobility. 
Despite this and the possibility that their technologies might be more economical at small scale 
than conventional technologies, their technologies are untested at this time and their economics 
estimates subject to large errors. 

 
 

OVERALL STUDY CONCLUSIONS 
 

This study concludes that of the four alternatives (NGL removal, CNG, power generation, 
and chemical production) investigated as viable end use technologies for using nontraditional 
NG, only two hold near-term promise – NGL removal and distributed power generation. All of 
the technologies, regardless of likelihood of deployment at small scale, have the potential to 
reduce, but not eliminate, the number of flares and the amount of flared associated gas in North 
Dakota (to varying degrees). A summary of all evaluated technologies with their pertinent 
characteristics is provided in Table 48. 
 
 
Table 57. Summary of Evaluated Technologies with Qualitative Characteristics 
 
 
 
 
Technology 

 
 
 

Gas Use Range, 
Mcfd 

 
 

NGL 
Removal 

Requirement 

 
 
 

Scalability 
to Resource 

 
 
 

Ease of 
Mobility 

Likelihood 
of 

Deployment 
at Small 

Scale 
Power – Grid 
  Support 

1000–1800 Minimal Very 
scalable 

Mobile Very likely 

Power – Local 
  Load 

300–600 Minimal Very 
scalable 

Mobile Very likely 

CNG 41 Mcfd/million 
mile fleet 

Yes Scalable Mobile Possible 

Chemicals >2000 Mcfd No Not scalable Not 
mobile 

Very 
unlikely 

Fertilizer 300–2000 No Scalable Potentially 
mobile 

Possible 

GTL >2000 Mcfd No Scalable Potentially 
mobile 

Possible 

 
 
NGL removal will not single-handedly reduce the number of flares, but it will reduce the 

overall quantity of flared gas and will create a viable secondary revenue stream for wells for 
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which gathering pipelines have not yet been installed. In fact, several companies are now 
pursuing this business opportunity within the Bakken region. 
 

Distributed power generation seems to best match the scale of the flared gas resource 
available, and can utilize the flared gas almost as is, with little cleanup necessary. Distributed 
power has the capability to provide grid support and increase reliability in the rural areas of 
North Dakota currently experiencing the highest levels of activity related to oil exploration. 
However, the evaluation of power generation scenarios assumes that adequate electrical 
infrastructure exists to accommodate the additional electricity these systems generate. 
 

The CNG application could be pursued, but requires extensive gas cleanup and polishing 
activity to achieve the gas quality levels currently demanded by engine providers. The CNG 
application also requires a fleet with some flexibility to follow the flared gas opportunities where 
they exist. More appropriate for CNG application is implementation at existing downstream gas 
supply for fleets of sufficient size to achieve significant financial benefit. 

 
Finally, the chemical production application holds the least promise of any applications 

investigated. This has much to do with supply chain logistics, and lack of demand for producible 
products in the upper Midwest. Chemical production tends to be tightly centered in 
petrochemical hubs, where all inputs are readily available, and a nearby pipeline for products is 
readily available. With that said, the production of nitrogen-based fertilizers (a subset of 
chemicals) may hold some promise at small scale. 
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OVERVIEW OF PETROCHEMICAL INDUSTRY INFRASTRUCTURE 
 
 
ECONOMIC CONDITIONS 
 

The global economic downturn of 2008–2009 reduced natural gas liquid (NGL) 
consumption during that period, the extent of which varied by region. As Table A-1 depicts, U.S. 
ethylene production peaked in 2007; whereas, Taiwan and China ethylene production fell 
slightly in 2008 but recovered and set records the following two years. In that environment, 
expansion of ethylene production was moving away from the United States toward areas of 
increasing demand such as the Far East and areas possessing feedstock advantages, such as the 
Middle East. 

 
Underlying the Middle East feedstock advantage was the perception that the United States 

would increasingly import NG. In 2006, North America (excluding Puerto Rico) had five 
operating liquefied NG (LNG) import terminals, with 17 more approved and 25 awaiting 
approval. At that time, there was only one export terminal in Kenai, Alaska, which has since 
been shutdown. Expectation of such importing implied expectations of limited domestic NG 
production increases and associated NGL production increases, as well as higher prices for both. 
Even with increased NG flow into the United States in the form of LNG, since LNG is generally 
more than 92% methane, NGL processing expansion opportunity was limited. 

 
Table A-2 portrays the difficulties that NG and NGL markets faced in the early to middle 

portion of the 2000s. NG prices were relatively high compared to those of its products and 
competition. Industrial NG prices averaged $4–$6/Mcf in 2002–2003, but increased to $7–
$9/Mcf in 2005–2006, and were headed higher. Additionally, NG price was about two-thirds of 
petroleum on an energy basis and the frac spread (i.e., the price of the fractionated products over 
the cost of the feedstock) was about $1/MMBtu. 
 

Exemplifying these economic conditions, production capacity was static or declining in the 
United States. In the case of NG-based chemicals, such as ammonia and methanol, production 
decreased by 41% and 89%, respectively, during the period 2000–2007. In the case of NGL 
derivatives, Chemical & Engineering News reported that, during the 2000s, U.S. petrochemical 
executives expected that “. . .investment of capital in domestic petrochemical plants would be 
limited mostly to maintenance.” 
 
 

Table A-1. Annual Ethylene Production Rates Compared to 2007 Base Year 
(American Chemical Society, 2011) 
 2007, metric 

tonnes/year 
2008 Rate, 

% 
2009 Rate, 

% 
2010 Rate, 

% 
United States 25,412 −11 −11 −6 
Taiwan 3666 −1 5 7 
China 10,477 −2 2 35 
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Table A-2. U.S. NG and NGL Market Comparison over Time 
 Early–Mid-2000s 2011 
Industrial NG Prices, direction $7.82/Mcf (up) (2006) $5.02/Mcf (down) 
Relative Value of NG to Crude 60%–65% (2003) 30%–35% 
Frac Spread $1/MMBtu (2002) $6–$8/MMBtu 
Direction of NG Movement Importer Exporter 
Direction of Olefin Production Contracting Expanding 
 
 

This situation changed dramatically during the 2000s as advances in drilling horizontal 
well bores and hydraulic fracturing made petroleum trapped in shale formations economically 
accessible. The increased U.S. NG production due to these methods has profoundly reduced the 
price of NG and associated liquids, especially relative to its crude oil-based competition, at a 
time when NGL-derived products have maintained their value. The effect is expanded 
investment in NG and NGL infrastructure in the United States and the potential reversal in 
direction of trade from increasing LNG imports to expanding LNG exports. Thus, while today 
there are 12 operating LNG import terminals in the United States (plus one in Puerto Rico), three 
of those are now approved to export LNG, with at least one additional pursuing approval to 
export. 

 
Extracting maximum return from a resource such as NG requires an efficient supply chain; 

inadequacies or inefficiencies in distribution or production systems reduce the value of the 
resource. The term “stranded” has been coined to describe extreme cases where valuable 
resources are inaccessible or transportation cost-excessive. Thus the value of resources depends 
upon the efficiency of their supply chains.  

 
Major determinants of the efficiency of chemical processes are the scalability of the 

process, installing the maximum size and operating near capacity – that is to say, design, install, 
and operate to maximize economy of scale. Major determinants of efficient storage and 
transportation are to use the cheapest storage technologies and locations, to minimize 
transportation distances, to use the cheapest transportation modes, and to operate near capacity. 
Other factors would be to take maximum advantage of synergies with existing facilities and to 
integrate multiple steps. In practice, 60% of U.S. ammonia production capacity is located in 
Louisiana, Oklahoma, and Texas because of proximity to NG feedstock. In the case of 
polyethylene plastic, more than 95% of ethane-cracking (ethylene production) capacity is in 
Louisiana and Texas, again in part because of proximity to petroleum and NGL feedstock. In 
2004, petroleum comprised about 55% of the ethylene feedstock. 

 
Recently, however, with the cash cost of making ethylene from ethane at 18 cents/pound 

and from light naphtha at 46.5 cents/pound, ethane makes up 70% of ethylene production. The 
appearance of substantial production from the Marcellus and Bakken Formations has had 
relatively little influence on plans for constructing future facilities in those areas as only one of 
five petrochemical companies that have announced plans to construct major new petrochemical 
complexes have decided to locate outside of Louisiana and Texas. Only Shell has announced 
construction outside of the U.S. Gulf Coast (USGC), recently selecting Pennsylvania for a new 
facility. 
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Shell’s decision came under criticism by participants at a September 2011 Platts-sponsored 
NGL Forum for various reasons, such as disposition of feed when the facility is processing at 
reduced rates. Feed can go to storage at Henry Hub or to the many other nearby petrochemical 
complexes if one USGC complex cannot accept feed – without such infrastructure around it, 
where will Shell send its feed? To take advantage of its proximity to northeastern customers, 
Shell also is considering constructing a polyethylene plant with the cracker; otherwise, it would 
have to transport its ethylene to a polymer plant. 

 
This would not be necessary on the USGC, since polyethylene plants and infrastructure 

already exist there. The decision could also be considered risky during periods that West Texas 
Intermediate (WTI) petroleum prices fall relative to NGLs: in situations when refinery feedstock 
is cheaper than NGLs, the USGC is advantaged because 1) it has many more refineries than the 
East Coast (45% of which are for sale or shutting down) and 2) recently its WTI feedstock has 
been cheaper than the Brent crude oil processed by East Coast refineries. 
 

Existing Infrastructure 
 

There are relatively few NGL pipelines as compared to NG and crude oil pipelines in the 
United States. With the exception of a couple of pipelines extending from Texas to New York 
and Texas to North Carolina, locations of North American component pipelines tend to reside 
within a “V” emanating from Texas northwestward to Alberta and from Texas northeastward to 
eastern Ontario, with the highest concentration lying between Kansas and the Texas Gulf Coast, 
as indicated by the PennWell LPG and NGL and Phillips 66 propane pipeline system maps 
shown in Figures A-1 and A-2. 

 
Enterprise Products Partners LLP owns or has interest in 15,600 miles of mixed NGL 

pipelines, 160 million barrels of usable storage capacity, and 619 thousand barrels per day of 
fractionation capacity in the central part of the United States, as shown in Figure A-3. The far 
eastern line is a propane pipeline that has not been included in the cumulative pipeline distance. 
Additionally, Enterprise Products operates a number of NGL storage facilities described in 
Table A-3 and NGL fractionation facilities described in Table A-4. 

 
Phillips 66 conducts its Midstream business primarily through a joint venture, Dakota 

Catalyst Products, Inc., Midstream LLC. DCP Midstream’s assets include 62,000 miles of 
pipelines, 61 gas-processing plants and 12 NGL fractionators. In 2010, DCP Midstream 
extracted 193 thousand barrels per day (Mbpd) of NGLs through fractionators in Mt. Belvieu, 
Texas (50 Mbpd), Conway, Kansas (43 Mbpd), and Gallup, NM (26 Mbpd), as well as other 
assets in Trinidad, the Caribbean, and Central America. Phillips 66 (previously the midstream 
and downstream segments of ConocoPhillips) also owns substantial pipeline assets, as indicated 
in Figure A-4. 

 
The Cochin (Dome) pipeline system (Figure A-5) is a 1900-mile, 12-inch-diameter 

multiproduct pipeline owned by Kinder–Morgan operating between Fort Saskatchewan, Alberta, 
and Windsor, Ontario, including five terminals. Operating on a batched basis, the system has an  
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estimated capacity of about 70,000 barrels per day and has five U.S. propane terminals. In 2007, 
the pipeline had filed tariff agreements with Federal Energy Regulatory Commission C for the 
following products between the indicated points: 
 

 Light hydrocarbon liquids between Fort Saskatchewan, Alberta, and Windsor, Ontario 
 
 Ethane and ethane–propane mix between points in Iowa and in Michigan 
 
 NGLs between Maxbass, North Dakota, and Detroit, Michigan 
 
 Ethylene between Maxbass, North Dakota, and delivery points in Iowa and Michigan 
 
 Ethane and propane between Cochin East, Iowa, and MAPCO near Iowa City, Iowa 
 
 NGLs between Maxbass, North Dakota, and Detroit, Michigan 

 
 Propane between points in North Dakota, Minnesota, and Iowa, and delivery points in 

North Dakota, Minnesota, Iowa, Indiana, and Michigan 
 
 Ethane between Maxbass, North Dakota, and delivery points in Iowa and Michigan 
 
 Field-grade butane between Maxbass, North Dakota, and Detroit, Michigan (reference 

to Maxbass and Detroit refers to the international boundary near those locations). 
 

Currently, pipeline operations only involve propane. In June 2010, Kinder–Morgan 
announced a nonbinding open season to add a lateral segment to Clarington, Ohio, to transport 
Marcellus Shale Y-grade NGLs. Enterprise Products, Phillips 66, the Cochin (Dome) pipelines, 
and the Buckeye NGL pipeline (Figure A-6) comprise the majority of U.S. mixed NGL 
pipelines. 

 
As shown in Figure A-7, Dow Chemical Company operates 3000 miles of product 

pipelines along the USGC. This system transports both liquid and gas products, with the vast 
majority of products being hydrocarbons that include NG, ethylene, propylene, propane, ethane, 
and ethane–propane mix. 
 

Future Expansion Infrastructure 
 

In response to recent market conditions, U.S. petrochemical companies are moving 
forward on expanding ethane-cracking capacity in the United States. The shale boom in North 
America has reversed the course of petrochemical companies which are switching feeds from 
naphtha to NGLs, unshuttering dormant facilities, modifying naphtha crackers to accept NGLs, 
and studying—if not beginning front-end engineering design of—new, multibillion-dollar 
complexes. In November, 2011, Bentek estimated that overall in the United States, the 17 
fractionation addition and expansion projects that have been announced will increase 
fractionation capacity by 27% (835 Mbpd) by the end of 2016. This forecast likely did not 
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include MarkWest Energy Partners’ February 2012 announcement of 140 Mbpd of additional 
fractionation in the Marcellus region. Additionally, Bentek reported that 12 new and expanded 
NGL pipelines will add 1800 Mbpd of capacity through 2014. Two expansions transport NGLs 
to the Conway area, while the remainder move NGLs to Mt. Belvieu. 

 
During the period 2011–2017, Williams estimates Marcellus production of ethane, 

propane, butanes, and NG will increase more than 185, 70, 30, and 20 Mbpd, respectively. For 
its size, the Marcellus is particularly underdeveloped: lacking processing, pipelines, 
fractionation, and other infrastructure. In response, Caiman Energy has announced projects in 
two locations that will install 720 MMcfd of gas-processing and 42.5 Mbpd of fractionation 
capacity within the next few years, and MarkWest is adding 1100 MMcfd gas-processing and 
115 Mbpd of deethanizing fractionation capacity. 

 
In North Dakota infrastructure expansion includes the Vantage ethane pipeline to Alberta 

and a rich gas line from the Tioga gas-processing plant to the Alliance Pipeline, which will 
permit some NGLs to travel with NG to fractionators in Illinois. Purvin & Gertz, the North 
Dakota Department of Mineral Resources and Vantage have projected North Dakota ethane 
supply to peak in the 2014–2020 time frame between 40 and 115 Mbpd, so the pipeline was 
designed to transport 40 Mbpd (60 Mbpd with additional pumping) of ethane to Alberta. Toll 
charges for the approximately 430-mile trip from Tioga, North Dakota, to Empress, Alberta, are 
to be 8.68 cpg the first year. OneOK’s 60 Mbpd (110 Mbpd with additional pumping) Bakken 
Extension to the Overland Pass Pipeline that goes south from North Dakota to Bushton (KS), 
near Conway, relies upon the expansion of Kansas fractionators and pipelines to Mt. Belvieu to 
minimize the Kansas and North Dakota discounts. 

 
In Kansas, ONEOK is increasing fractionation capacity in Bushton to match the additional 

60 Mbpd to be received on the Overland Pass Pipeline.  
 
Figure A-8 displays existing pipelines and summarizes expansions announced prior to 

September 2011. 
 
Figure A-9 indicates that Mt. Belvieu, for example, will need to more than double its 2009 

fractionation capacity to be able to fractionate its additional NGL imports.  
 
Five world-class plants are planned or are being constructed in the United States: 

 
 ChevronPhillips Chemical Company 1.5-million-tpy cracker outside of Houston and 

polyethylene plant near its Sweeny, Texas, cracker 
 
 Dow Chemical ethylene and 0.75-million-tpy propylene units in Freeport, Texas 
 
 Sasol 1.4-million-tpy cracker in Lake Charles, Louisiana 

 
 Formosa Plastics 0.8-million-tpy ethylene cracker, 0.6-million-tpy propane 

dehydrogenation unit, and a linear low-density polyethylene plant in Point Comfort, 
Texas 
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 Shell ethane cracker, as well as polyethylene and monoethylene glycol chemical 
facilities in near Monaca, Pennsylvania 

 
In addition to these, other companies are unshuttering or have suggested constructing or 

expanding cracking facilities: 
 

 Dow is restarting a cracker near Hahnville, Louisiana. 
 

 Occidental Petroleum in Ingleside, Texas, where it makes vinyl chloride. 
 

 Either Chemicals is considering building an ethane catalytic cracker near Charleston, 
West Virginia. 
 

 LyondellBasell is studying expansion equivalent to a half-cracker at an existing facility. 
 

In reflecting on these announcements, industry and media have commented that not all 
announced facilities will be constructed and not in the announced time frames. The 
petrochemical industry has tended to overconstruct, resulting in excess capacity, and has viewed 
shale skeptically (although developing confidence with time). While most capacity should be 
installed in the 2015–2017 time frame, construction pace might be adjusted with infrastructure 
rollout and feed availability. 

 
Shell’s Appalachian facility, constructed away from the USGC infrastructure, has drawn 

attention. Factors favoring the plan include: 
 

 Proximity to the Marcellus supply. 
 
 Location within 400 miles of almost half of U.S. plastics converters who would benefit 

by having faster delivery and less inventory requirements. 
 
 Lower ethane feedstock cost because of lack of infrastructure to transport ethane out of 

the region. 
 
 Potential underground ethane storage (as indicated by the presence of underground NG 

storage in the Appalachian region shown in Figure A-10). 
 

Factors that could work against Shell’s proposal include: 
 

 Lack of infrastructure (although Shell representatives have said that there is a solution 
to the lack of infrastructure issue). 

 
 Lower feedstock price, which will be temporary as infrastructure appears. 
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DISTRIBUTED-SCALE AMMONIA PLANT PRELIMINARY DESIGN 
 
 
DESIGN APPROACH 
 

As part of a project to develop a basic engineering design package for a 20-ton/day 
ammonia production plant based on the use of natural gas feedstock, the Energy & 
Environmental Research Center developed a preliminary plant design comprising the primary 
unit operations (unit ops) of: 
 

 Feedstock gas cleanup to the extent required to yield a methane-rich gas suitable to 
undergo catalytic steam reforming. 

 
 Catalytic steam reforming of methane-rich gas to yield a syngas comprising primarily 

hydrogen, carbon monoxide, carbon dioxide, and water, followed by hydrogen 
separation from the syngas to yield a hydrogen stream with a purity level of at least 
99.99%. 

 
 Separation of nitrogen from air to yield a nitrogen stream with a purity level of at least 

99.99%. 
 
 Ammonia synthesis via reacting high-purity hydrogen with air-extracted nitrogen in a 

reactor system equipped with capabilities for ammonia recovery, recycle of unreacted 
hydrogen and nitrogen, and purge of inert materials. 

 
This design was the basis for ammonia production cost estimates presented previously. 

Following is a description of the ammonia process, after which tables containing individual 
equipment costs and tables containing detailed product cost breakdowns appear. 

 
Figure B-1 illustrates the ammonia production pathway and key process inputs, along with 

optional modules for on-site electricity production and conversion of ammonia to urea. The 
overall natural gas-to-ammonia process was conceptualized and simulated with Aspen Plus 
modeling software. The simulation encompassed separation of raw gas-contained methane from 
impurities such as sulfur compounds and carbon dioxide, reforming methane into hydrogen, 
nitrogen separation from air, and reaction of hydrogen and nitrogen to form ammonia. The basic 
process flow diagram developed from the Aspen Plus model is shown in Figure B-2. The model 
was optimized based on an input of 39,000 standard cubic feet/hour (scfh) of raw gas with a 
composition of 52% methane, 36% carbon dioxide, and the remainder being nitrogen, oxygen, 
and trace amounts of sulfur compounds. About 350 gallons/hour of water is consumed during 
hydrogen production, and 120,000 scfh of air is required for combustion (to provide heat to drive 
the endothermic steam methane reforming [SMR] hydrogen production reaction) and as a source 
of nitrogen. Approximately 1 megawatt (MW) of electricity is required, most of which is used 
for gas compression. 

 
To enable the quickest path to plant fabrication, the basic engineering plant design effort 

incorporated—to the extent possible—commercially available technologies as primary unit ops. 
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nitrogen streams will undergo compression to approximately 100 bar and then will be combined 
in a catalytic ammonia reactor. The produced ammonia will be condensed and separated from the 
unconverted gases, which are recycled back to the reactor. Near 100% conversion of hydrogen 
and nitrogen is achieved and 1710 lb/hour (equating to about 20 tons per day) of ammonia is 
produced. About 304 kW of electricity is required for gas compression. The ammonia product 
can be stored for sale or converted to urea. For urea production, exhaust carbon dioxide from the 
SMR (hydrogen production) unit is purified and reacted with ammonia to produce urea. About 
2089 lb/hour of carbon dioxide is required to react with the 1710 lb/hour of ammonia to yield 
2850 lb/hour (equating to about 35 tons/day) of urea. 

 
Capital Cost Estimate 
 
Using the quotes received from vendors for selected unit operations and smaller equipment 

pieces and ancillary plant requirements, a cost estimate for fabrication of a 20-ton/day natural 
gas-to-ammonia plant was prepared. As shown in Table B-1, the total estimated capital cost of 
the plant is $16.5 million. Also as shown in the table, the total cost estimate includes a 
$2.5 million used hydrogen production unit. The unit comes with a guarantee, and it is 
worthwhile to note that several small-scale good-condition SMR units are available from 
vegetable oil refiners that are facing reduced demand for hydrogenated vegetable oil and no 
longer need on-site hydrogen production capability.  

 
Using this 20-ton/day design and cost estimate as the basis, an analysis was performed to 

evaluate the economics of ammonia production for three scenarios: 
 
 
Table B-1. 20-tons/day Ammonia Plant Preliminary Capital Cost Estimate 
 
 
Cost Item 

Cost 
Estimate, 
$million 

 
 

Notes 
Gas Cleanup 3.61 Includes $500K assembly cost 
Hydrogen Production/Purification 2.52 Used unit; includes $500K assembly cost 
Reverse Osmosis Water Cleanup 0.1  
Nitrogen Generation 1.4 Includes $300K assembly cost 
Ammonia Synthesis Loop 2.5 Preliminary cost estimate 
Hydrogen Compressor 1.5  
Nitrogen Compressor 0.5  
Control System 0.1  
Ammonia Storage3 and Loadout 1.1  
Detailed Engineering 1.3  
Site Preparation 0.5 Estimate; need site-specific information 
Assembly 0.5  
Shakedown 0.5  
Total Installed Cost 16.5  
1 Less expensive unit may be available. 
2 Cost of new unit, including assembly, is $6 million. 
3 7 days worth (140 tons) of storage. 
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 2000 Mcfd gas flow and a 2000-Mcfd-capacity reactor (90 tpd ammonia) 
 320 Mcfd gas flow and a 2000-Mcfd-capacity reactor (90 tpd ammonia) 
 320 Mcfg gas flow and a 320-Mcfd-capacity reactor (15 tpd ammonia) 

 
In the absence of an objective basis by which to estimate siting requirements for a compact 

ammonia production unit, no land acquisition costs were incurred in this cost estimate. 
 
A total capital equipment cost of $6 million was used for the 20-tpd system. Cost estimates 

for the different-sized systems was accomplished by means of correlations using the exponential 
relationship between equipment size and cost: 
 

Cost2 = Cost1 *(Size2 / Size1)
n 

 
Standard exponents from the technical literature (Towler and Sinnott, 1991) were adopted, 

and a 0.79 exponent was adopted based on literature values.  
 
Detailed economic data for each of the three scenarios is provided in Tables B-2–B-4. 
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Table B-2. 2000 Mcfd and Large Reactor Design Applying Current Technology Reformer 
Ammonia Total Product Cost Estimate 
2000 Mcfd and Large Reactor Design 

   Feed Rate: 2000 Mcfd natural gas 
Location: Bakken (2012)  Heating value: 1490 Btu/cf natural gas 
Capital Investment   Gas Consumption: 36.5 MMBtu/tonne 
  Fixed $51,889,617  Capacity:  81.7 tonne/d ammonia 

 90.1 ton/d ammonia   Working   
  Start-Up $500,000  On Stream: 95% 
Total  $52,389,617  Production: 31,249 ton/year ammonia 
    
  

Quantity/ton 
 

Price $/unit 
Cost 

 $/year $/ton 
Raw Materials     
  Natural Gas (Feed + Fuel) 22.2 Mcf 0.00 0 0.00 
Utilities     
  Electricity 1200 kWh 0.09 3,374,889 108.00 
  Water 420 gal 0.02 262,491 8.40 
Total Utilities   3,637,380 116.40 
Labor     
  Operating 0.25 Operator/shift 300,000 75,000 2.40 
  Laboratory 10% Operating labor  7500 0.24 
  Maintenance 1.5% Fixed captial 

  Investment (FCI) 
 778,344 24.91 

  Operating Supplies 10% Operating labor  7500 0.24 
Supplies     
  General 0.6% FCI  311,338 9.96 
  Maintenance 1.5% FCI  778,344 24.91 
  Catalyst and Chem.   31,250 1.00 
Direct Production Cost    180.06 
Plant Overhead 20% Total labor  173,669 5.56 
Fixed Charges     
  Insur. and Taxes 2% FCI  1,037,792 33.21 
  Depreciation 5% FCI + start-up  2,619,481 83.83 
Manufacturing Cost   9,457,598 302.65 
Gen. Expen. (Salary 
  Administration Research and 
  Expenses (SARE) 

1% Sales  95,531 3.06 

Total Product Cost    305.71 
Before Tax Return on 
Investment (ROI) 

0% Total investment  0 0.00 

Product Value   9,553,130 305.71 
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Table B-3. 320 Mcfd and Large Reactor Design Applying Current Technology Reformer 
Ammonia Total Product Cost Estimate 

320 Mcfd and Large Reactor Design 
   Feed Rate: 2000 Mcfd natural gas 
Location: Bakken (2012)  Heating value: 1490 Btu/cf natural gas 
Capital Investment   Gas Consumption: 36.5 MMBtu/tonne 
  Fixed $51,889,617  Capacity:  81.7 tonne/d ammonia 

 90.1 ton/d ammonia   Working   
  Start-Up $500,000  On stream: 95% 
Total  $52,389,617  Production: 31,249 ton/year ammonia 
     
  

Quantity/ton 
 

Price $/unit 
Cost 

 $/year $/ton 
Raw Materials     
  Natural Gas (Feed + Fuel) 22.2 Mcf 0.00 0 0.00 
Utilities     
  Electricity 1200 kWh 0.09 539,613 108.00 
  Water 420 gal 0.02 41,970 8.40 
Total Utilities   581,583 116.40 
Labor     
  Operating 0.25 Operator/shift 300,000 75,000 15.01 
  Laboratory 10% Operating labor  7500 1.50 
  Maintenance 1.5% FCI  778,344 155.78 
  Operating Supplies 10% Operating labor  7500 1.50 
Supplies     
  General 0.6% FCI  311,338 62.31 
  Maintenance 1.5% FCI  778,344 155.78 
  Catalyst and Chem.   5000 1.00 
Direct Production Cost    509.29 
Plant Overhead 20% Total labor  173,669 34.76 
Fixed Charges     
  Insur. and Taxes 2% FCI  1,037,792 207.71 
  Depreciation 5% FCI + start-up  2,619,481 524.27 
Manufacturing Cost   6,375,551 1,276.03 
Gen. Expen. (SARE) 1% Sales  64,400 12.89 
Total Product Cost    1288.91 
Before Tax ROI 0% Total investment  0 0.00 
Product Value   6,439,950 1288.91 
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Table B-4. 2000 Mcfd and Small Reactor Design Applying Current Technology Reformer 
Ammonia Total Product Cost Estimate 

320 Mcfd and Small Reactor Design 
   Feed Rate: 320 Mcfd natural gas 
Location: Bakken (2012)  Heating value: 1490 Btu/cf natural gas 
Capital Investment   Gas Consumption: 36.5 MMBtu/tonne 
  Fixed $16,885,099  Capacity:  13.1 tonne/d ammonia 

 14.4 ton/d ammonia   Working   
  Start Up $500,000  On stream: 95% 
Total  $17,385,099  Production: 4996 ton/year ammonia 
     
  

Quantity/ton 
 

Price $/unit 
Cost 

 $/year $/ton 
Raw Materials     
  Natural Gas (Feed + Fuel) 22.2 Mcf 0.00 0 0.00 
Utilities     
  Electricity 1200 kWh 0.09 539,611 108.00 
  Water 420 gal 0.02 41,970 8.40 
Total Utilities   581,581 116.40 
Labor     
  Operating 0.25 Operator/shift 300,000 75,000 15.01 
  Laboratory 10% Operating labor  7500 1.50 
  Maintenance 1.5% FCI  223,276 50.69 
  Operating Supplies 10% Operating labor  7500 1.50 
Supplies     
  General 0.6% FCI  101,311 20.28 
  Maintenance 1.5% FCI  253,276 50.69 
  Catalyst and Chem.   5000 1.00 
Direct Production Cost    257.07 
Plant Overhead 20% Total labor  68,655 13.74 
Fixed Charges     
  Insur. and Taxes 2% FCI  337,702 67.59 
  Depreciation 5% FCI + start-up  869,255 173.98 
Manufacturing Cost   2,560,056 512.38 
Gen. Expen. (SARE) 1% Sales  25,859 5.18 
Total Product Cost    517.56 
Before Tax ROI 0% Total investment  0 0.00 
Product Value   2,585,916 517.56 
 
 
REFERENCES 
 
Towler, G.; Sinnott, R. Chemical Engineering Design: Principles, Practice and Economics of 

Plant and Process Design second edition; Elsevier Ltd. 
 
Peters, M.; and Timmerhaus, K. Plant Design and Economics for Chemical Engineers; fourth 

edition, McGraw-Hill, Inc., 1991. 
 
 



 

 

APPENDIX C 
 

AMBIENT WEATHER DATA FOR 
DICKINSON, NORTH DAKOTA 
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Table C-1. Daily Temperature Data for Dickinson, North Dakota, August 17, 
2012, through October 2, 2012 

Temperature, °F 
Date Minimum  Mean  Maximum  
17-August 46.9 63.6 84 
18-August 51.1 66.7 81 
19-August 48.9 67.4 82.9 
20-August 55 69.6 84.9 
21-August 55.9 71.8 91 
22-August 59 75 90 
23-August 55.9 77 96.1 
24-August 63 80.1 96.1 
25-August 42.1 66.1 91 
26-August 48 68.5 84 
27-August 54 72.5 97 
28-August 57.9 77.8 99 
29-August 66.9 83.9 104 
30-August 62.1 75 100 
31-August 64 72.7 84.9 
1-September 64 79.8 100.9 
2-September 63 76 93 
3-September 57.9 73 86 
4-September 46 67.6 87.1 
5-September 42.1 60.9 79 
6-September 52 62.8 77 
7-September 44.1 60.2 73 
8-September 46 62.3 78.1 
9-September 46.9 65.2 91 
10-September 57 76.1 96.1 
11-September 54 68 89.1 
12-September 39 56.5 69.1 
13-September 34 57.8 77 
14-September 41 62.2 82.9 
15-September 50 67 88 
16-September 48 59.3 82.9 
17-September 41 51.4 64 
18-September 42.1 60.2 82 
19-September 46 61.3 79 
20-September 46 57.6 73 
21-September 44.1 57.5 72 
22-September 33.1 51.4 66.9 
23-September 37 52.5 68 
24-September 36 58.4 81 
25-September 43 63.7 80.1 
26-September 44.1 62.6 82.9 
27-September 48 65.2 80.1 
28-September 50 64.1 79 
29-September 50 65.3 84.9 
30-September 51.1 66.4 81 
1-October 41 54.9 69.1 
2-October 44.1 59.6 79 
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